Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 248 tok/s Pro
2000 character limit reached

Optimizing Non-Autoregressive Transformers with Contrastive Learning (2305.13667v2)

Published 23 May 2023 in cs.CL

Abstract: Non-autoregressive Transformers (NATs) reduce the inference latency of Autoregressive Transformers (ATs) by predicting words all at once rather than in sequential order. They have achieved remarkable progress in machine translation as well as many other applications. However, a long-standing challenge for NATs is the learning of multi-modality data distribution, which is the main cause of the performance gap between NATs and ATs. In this paper, we propose to ease the difficulty of modality learning via sampling from the model distribution instead of the data distribution. We derive contrastive constraints to stabilize the training process and integrate this resulting objective with the state-of-the-art NAT architecture DA-Transformer. Our model \method is examined on 3 different tasks, including machine translation, text summarization, and paraphrasing with 5 benchmarks. Results show that our approach outperforms previous non-autoregressive baselines by a significant margin and establishes new state-of-the-art results for non-autoregressive transformers on all the benchmarks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube