Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrapolating Multilingual Understanding Models as Multilingual Generators (2305.13140v1)

Published 22 May 2023 in cs.CL

Abstract: Multilingual understanding models (or encoder-based), pre-trained via masked LLMing, have achieved promising results on many language understanding tasks (e.g., mBERT). However, these non-autoregressive (NAR) models still struggle to generate high-quality texts compared with autoregressive (AR) models. Considering that encoder-based models have the advantage of efficient generation and self-correction abilities, this paper explores methods to empower multilingual understanding models the generation abilities to get a unified model. Specifically, we start from a multilingual encoder (XLM-R) and propose a \textbf{S}emantic-\textbf{G}uided \textbf{A}lignment-then-Denoising (SGA) approach to adapt an encoder to a multilingual generator with a small number of new parameters. Experiments show that the proposed approach is an effective adaption method, outperforming widely-used initialization-based methods with gains of 9.4 BLEU on machine translation, 8.1 Rouge-L on question generation, and 5.5 METEOR on story generation on XLM-R$_{large}$. On the other hand, we observe that XLM-R is still inferior to mBART in supervised settings despite better results on zero-shot settings, indicating that more exploration is required to make understanding models strong generators.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bohong Wu (11 papers)
  2. Fei Yuan (28 papers)
  3. Hai Zhao (227 papers)
  4. Lei Li (1293 papers)
  5. Jingjing Xu (80 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.