Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Decay of correlations in stochastic quantization: the exponential Euclidean field in two dimensions (2305.12017v2)

Published 19 May 2023 in math-ph, math.MP, math.OA, and math.PR

Abstract: We present two approaches to establish the exponential decay of correlation functions of Euclidean quantum field theories (EQFTs) via stochastic quantization (SQ). In particular we consider the elliptic stochastic quantization of the H{\o}egh--Krohn (or $\exp (\alpha \phi)_2$) EQFT in two dimensions. The first method is based on a path-wise coupling argument and PDE apriori estimates while the second on estimates of the Malliavin derivative of the solution to the SQ equation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Elliptic stochastic quantization. Ann. Probab., 48(4):1693–1741, 2020.
  2. The elliptic stochastic quantization of some two dimensional Euclidean QFTs. Ann. Inst. Henri Poincaré Probab. Stat., 57(4):2372–2414, 2021.
  3. S. Albeverio and R. Høegh-Krohn. The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time. J. Functional Analysis, 16:39–82, 1974.
  4. Uniqueness of Gibbs states for general P⁢(φ)2𝑃subscript𝜑2P(\varphi)_{2}italic_P ( italic_φ ) start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-weak coupling models by cluster expansion. Comm. Math. Phys., 121(4):683–697, 1989.
  5. S. Albeverio and S. Kusuoka. The invariant measure and the flow associated to the Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT-quantum field model. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 20(4):1359–1427, 2020.
  6. Clustering bounds on n𝑛nitalic_n-point correlations for unbounded spin systems. J. Stat. Phys., 136(3):405–452, 2009.
  7. S. Albeverio and M. W. Yoshida. H−C1𝐻superscript𝐶1H-C^{1}italic_H - italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT maps and elliptic SPDEs with non-linear local perturbations of Nelson’s Euclidean free field. J. Funct. Anal., 196(2):265–322, 2002.
  8. N. Barashkov. A stochastic control approach to Sine Gordon EQFT. ArXiv:2203.06626, mar 2022.
  9. R. Bauerschmidt and T. Bodineau. Log-Sobolev Inequality for the Continuum Sine-Gordon Model. Comm. Pure Appl. Math., 74(10):2064–2113, 2021.
  10. Fourier analysis and nonlinear partial differential equations. Fundamental Principles of Mathematical Sciences. Springer, Heidelberg, 2011.
  11. R. Bauerschmidt and B. Dagallier. Log-Sobolev inequality for the φ24subscriptsuperscript𝜑42\varphi^{4}_{2}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and φ34subscriptsuperscript𝜑43\varphi^{4}_{3}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT measures. Comm. Pure Appl. Math., 77:2579–2612, 2024.
  12. N. Barashkov and M. Gubinelli. A variational method for Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Duke Math. J., 169(17):3339–3415, 2020.
  13. N. Barashkov and M. Gubinelli. On the variational method for Euclidean quantum fields in infinite volume. Probab. Math. Phys., 4(4):761–801, 2023.
  14. N. Barashkov and F. C. De Vecchi. Elliptic stochastic quantization of Sinh-Gordon QFT. ArXiv:2108.12664, aug 2021.
  15. R. Catellier and K. Chouk. Paracontrolled distributions and the 3-dimensional stochastic quantization equation. Ann. Probab., 46(5):2621–2679, 2018.
  16. G. Da Prato and A. Debussche. Strong solutions to the stochastic quantization equations. Ann. Probab., 31(4):1900–1916, 2003.
  17. A stochastic analysis of subcritical Euclidean fermionic field theories. ArXiv:2210.15047, oct 2022.
  18. Exponential decay of truncated correlations for the ising model in any dimension for all but the critical temperature. Comm. Math. Phys., 374(2):891–921, 2018.
  19. J. Dimock. A cluster expansion for stochastic lattice fields. J. Statist. Phys., 58(5-6):1181–1207, 1990.
  20. L. C. Evans. Partial differential equations. Volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998.
  21. M. Furlan and M. Gubinelli. Weak universality for a class of 3d stochastic reaction-diffusion models. Probab. Theory Related Fields, 173(3-4):1099–1164, 2019.
  22. A. Friedman. Stochastic differential equations and applications. Vol. 1. Academic Press, New York-London, 1975.
  23. T. Funaki. The reversible measures of multi-dimensional Ginzburg-Landau type continuum model. 28(3):463–494, 1991.
  24. J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view. Springer-Verlag, New York, Second edition, 1987.
  25. The particle structure of the weakly coupled p(ϕitalic-ϕ\phiitalic_ϕ)2 model and other applications of high temperature expansions. Part II: The Cluster Expansion, in Constructive Quantum Field Theory, A.S. Wightman (ed.), Springer Lecture Notes in Physics Volume 25, Springer, Berlin, New York, 1973.
  26. The wightman axioms and particle structure in the p(ϕitalic-ϕ\phiitalic_ϕ)2 quantum field model. Ann. of Math., 100(2):585–632, 1974.
  27. M. Gubinelli and M. Hofmanová. Global solutions to elliptic and parabolic ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models in euclidean space. Comm. Math. Phys., 368(3):1201–1266, 2019.
  28. M. Gubinelli and M. Hofmanová. A PDE construction of the Euclidean ϕ34superscriptsubscriptitalic-ϕ34\phi_{3}^{4}italic_ϕ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT quantum field theory. Comm. Math. Phys., 384(1):1–75, 2021.
  29. M. Gubinelli and S.-J. Meyer. The FBSDE approach to sine-Gordon up to 6⁢π6𝜋6\pi6 italic_π. ArXiv:2401.13648, jan 2024.
  30. P. Duch, M. Gubinelli and P. Rinaldi. Parabolic stochastic quantisation of the fractional Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT model in the full subcritical regime. mar 2024.
  31. M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014.
  32. K. Hepp. On the connection between the LSZ and Wightman quantum field theory. Comm. Math. Phys., 1:95–111, 1965.
  33. R. Høegh-Krohn. A general class of quantum fields without cut-offs in two space-time dimensions. Comm. Math. Phys., 21:244–255, 1971.
  34. A. Jaffe. Constructive quantum field theory. In Mathematical Physics, T. Kibble, ed. World Scientific, Singapore, 2000.
  35. S. Janson. Gaussian Hilbert spaces. Cambridge Tracts in Mathematics, 129. Cambridge University Press, Cambridge, 1997.
  36. G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory. Comm. Math. Phys., 101(3):409–436, 1985.
  37. G. Jona-Lasinio and P. K. Mitter. Large deviation estimates in the stochastic quantization of ϕitalic-ϕ\phiitalic_ϕ22{}_{\textrm{2}}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT4}}\}}. Comm. Math. Phys., 130(1):111–121, 1990.
  38. G. Jona-Lasinio and R. Sénéor. Study of stochastic differential equations by constructive methods. i. J. Statist. Phys, 83(5-6):1109–1148, 1996.
  39. A. Kupiainen. Renormalization group and stochastic pdes. Ann. Henri Poincaré, 17(3):497–535, 2016.
  40. J. R. Munkres. Topology. Prentice Hall, NJ, 2nd edition, 2000.
  41. J.-C. Mourrat and H. Weber. Global well-posedness of the dynamic Φ4superscriptΦ4\Phi^{4}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model in the plane. Ann. Probab., 45(4):2398–2476, 2017.
  42. A. Moinat and H. Weber. Space-time localisation for the dynamic Φ34subscriptsuperscriptΦ43\Phi^{4}_{3}roman_Φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT model. Comm. Pure Appl. Math., 73(12):2519–2555, 2020.
  43. E. Nelson. Dynamical Theories of Brownian Motion. Princeton University Press, Princeton, N.J., 1967.
  44. D. Nualart. The Malliavin calculus and related topics. Probability and its Applications. Springer-Verlag, Berlin, Second edition, 2006.
  45. G. Parisi. Correlation functions and computer simulations. Nuclear Phys. B, 180(3):378–384, 1981.
  46. G. Parisi and N. Sourlas. Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett., 43(11):744–745, 1979.
  47. G. Parisi and N. Sourlas. Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B, 206(2):321–332, 1982.
  48. G. Parisi and Y. S. Wu. Perturbation theory without gauge fixing. Sci. Sinica, 24(4):483–496, 1981.
  49. S. Tindel. Quasilinear stochastic elliptic equations with reflection: the existence of a density. Bernoulli, 4(4):445–459, 1998.
  50. H. Triebel. Theory of function spaces. III. Monographs in Mathematics. BirkhäuserVerlag, Basel, 2006.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets