Fermion mass hierarchy in an extended left-right symmetric model (2305.11967v2)
Abstract: We present a Left-Right symmetric model that provides an explanation for the mass hierarchy of the charged fermions within the framework of the Standard Model. This explanation is achieved through the utilization of both tree-level and radiative seesaw mechanisms. In this model, the tiny masses of the light active neutrinos are generated via a three-loop radiative inverse seesaw mechanism, with Dirac and Majorana submatrices arising at one-loop level. To the best of our knowledge, this is the first example of the inverse seesaw mechanism being implemented with both submatrices generated at one-loop level. The model contains a global $U(1)_{X}$ symmetry which, after its spontaneous breaking, allows for the stabilization of the Dark Matter (DM) candidates. We show that the electroweak precision observables, the electron and muon anomalous magnetic moments as well as the Charged Lepton Flavor Violating decays, $\mu \rightarrow e \gamma$, are consistent with the current experimental limits. In addition, we analyze the implications of the model for the $95$ GeV diphoton excess recently reported by the CMS collaboration and demonstrate that such anomaly could be easily accommodated. Finally, we discuss qualitative aspects of DM in the considered model.
- A. Davidson and K. C. Wali, “Universal Seesaw Mechanism?,” Phys. Rev. Lett. 59 (1987) 393.
- E. Ma, “Radiative inverse seesaw mechanism for nonzero neutrino mass,” Phys. Rev. D 80 (2009) 013013, arXiv:0904.4450 [hep-ph].
- S. S. C. Law and K. L. McDonald, “Inverse seesaw and dark matter in models with exotic lepton triplets,” Phys. Lett. B 713 (2012) 490–494, arXiv:1204.2529 [hep-ph].
- A. Ahriche, S. M. Boucenna, and S. Nasri, “Dark Radiative Inverse Seesaw Mechanism,” Phys. Rev. D 93 no. 7, (2016) 075036, arXiv:1601.04336 [hep-ph].
- A. E. Cárcamo Hernández and H. N. Long, “A highly predictive A4subscript𝐴4A_{4}italic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT flavour 3-3-1 model with radiative inverse seesaw mechanism,” J. Phys. G 45 no. 4, (2018) 045001, arXiv:1705.05246 [hep-ph].
- A. E. Cárcamo Hernández, S. Kovalenko, H. N. Long, and I. Schmidt, “A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern,” JHEP 07 (2018) 144, arXiv:1705.09169 [hep-ph].
- A. E. Cárcamo Hernández, S. Kovalenko, J. W. F. Valle, and C. A. Vaquera-Araujo, “Neutrino predictions from a left-right symmetric flavored extension of the standard model,” JHEP 02 (2019) 065, arXiv:1811.03018 [hep-ph].
- S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, “Dark matter as the origin of neutrino mass in the inverse seesaw mechanism,” Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
- A. E. Cárcamo Hernández, D. T. Huong, and H. N. Long, “Minimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,” Phys. Rev. D 102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
- A. Abada, N. Bernal, A. E. C. Hernández, X. Marcano, and G. Piazza, “Gauged inverse seesaw from dark matter,” Eur. Phys. J. C 81 no. 8, (2021) 758, arXiv:2107.02803 [hep-ph].
- A. E. C. Hernández, C. Espinoza, J. C. Gómez-Izquierdo, and M. Mondragón, “Fermion masses and mixings, dark matter, leptogenesis and g−2𝑔2g-2italic_g - 2 muon anomaly in an extended 2HDM with inverse seesaw,” Eur. Phys. J. Plus 137 no. 11, (2022) 1224, arXiv:2104.02730 [hep-ph].
- A. E. C. Hernández, D. T. Huong, and I. Schmidt, “Universal inverse seesaw mechanism as a source of the SM fermion mass hierarchy,” Eur. Phys. J. C 82 no. 1, (2022) 63, arXiv:2109.12118 [hep-ph].
- A. E. C. Hernández and I. Schmidt, “A renormalizable left-right symmetric model with low scale seesaw mechanisms,” Nucl. Phys. B 976 (2022) 115696, arXiv:2101.02718 [hep-ph].
- W. Dekens and D. Boer, “Viability of minimal left–right models with discrete symmetries,” Nucl. Phys. B889 (2014) 727–756, arXiv:1409.4052 [hep-ph].
- T. Nomura, H. Okada, and Y. Orikasa, “Radiative neutrino mass in alternative left–right model,” Eur. Phys. J. C77 no. 2, (2017) 103, arXiv:1602.08302 [hep-ph].
- V. Brdar and A. Y. Smirnov, “Low Scale Left-Right Symmetry and Naturally Small Neutrino Mass,” JHEP 02 (2019) 045, arXiv:1809.09115 [hep-ph].
- E. Ma, “Universal Scotogenic Fermion Masses in Left-Right Gauge Model,” Nucl. Phys. B967 (2021) 115406, arXiv:2012.03128 [hep-ph].
- K. S. Babu and A. Thapa, “Left-Right Symmetric Model without Higgs Triplets,” arXiv:2012.13420 [hep-ph].
- ATLAS Collaboration, M. Aaboud et al., “Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 05 (2019) 041, arXiv:1812.09743 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Search for new phenomena in events with same-charge leptons and b𝑏bitalic_b-jets in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 12 (2018) 039, arXiv:1807.11883 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Search for pair production of heavy vector-like quarks decaying into hadronic final states in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Phys. Rev. D 98 no. 9, (2018) 092005, arXiv:1808.01771 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., “Search for pair production of heavy vector-like quarks decaying to high-pT𝑇{}_{T}start_FLOATSUBSCRIPT italic_T end_FLOATSUBSCRIPT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 10 (2017) 141, arXiv:1707.03347 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,” Eur. Phys. J. C 76 no. 8, (2016) 442, arXiv:1602.05606 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp𝑝𝑝ppitalic_p italic_p collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,” JHEP 08 (2015) 105, arXiv:1505.04306 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for pair production of a new heavy quark that decays into a W𝑊Witalic_W boson and a light quark in pp𝑝𝑝ppitalic_p italic_p collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,” Phys. Rev. D 92 no. 11, (2015) 112007, arXiv:1509.04261 [hep-ex].
- ATLAS Collaboration, G. Aad et al., “Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector,” Phys. Lett. B 712 (2012) 22–39, arXiv:1112.5755 [hep-ex].
- F. F. Freitas, J. a. Gonçalves, A. P. Morais, and R. Pasechnik, “Phenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets,” Eur. Phys. J. C 82 no. 9, (2022) 826, arXiv:2204.12542 [hep-ph].
- F. F. Freitas, J. a. Gonçalves, A. P. Morais, and R. Pasechnik, “Phenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider,” JHEP 01 (2021) 076, arXiv:2010.01307 [hep-ph].
- A. P. Morais, A. Onofre, F. F. Freitas, J. a. Gonçalves, R. Pasechnik, and R. Santos, “Deep learning searches for vector-like leptons at the LHC and electron/muon colliders,” Eur. Phys. J. C 83 no. 3, (2023) 232, arXiv:2108.03926 [hep-ph].
- Z.-z. Xing, “Flavor structures of charged fermions and massive neutrinos,” Phys. Rept. 854 (2020) 1–147, arXiv:1909.09610 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- A. E. Cárcamo Hernández, S. Kovalenko, and I. Schmidt, “Radiatively generated hierarchy of lepton and quark masses,” JHEP 02 (2017) 125, arXiv:1611.09797 [hep-ph].
- M. E. Peskin and T. Takeuchi, “Estimation of oblique electroweak corrections,” Phys. Rev. D 46 (1992) 381–409.
- G. Altarelli and R. Barbieri, “Vacuum polarization effects of new physics on electroweak processes,” Phys. Lett. B 253 (1991) 161–167.
- R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, “Electroweak symmetry breaking after LEP-1 and LEP-2,” Nucl. Phys. B 703 (2004) 127–146, arXiv:hep-ph/0405040.
- A. E. Cárcamo Hernández, S. Kovalenko, and I. Schmidt, “Precision measurements constraints on the number of Higgs doublets,” Phys. Rev. D 91 (2015) 095014, arXiv:1503.03026 [hep-ph].
- A. S. Adam, A. Ferdiyan, and M. Satriawan, “A New Left-Right Symmetry Model,” Adv. High Energy Phys. 2020 (2020) 3090783, arXiv:1903.03370 [hep-ph].
- C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, “Electroweak precision fit and new physics in light of the W boson mass,” Phys. Rev. D 106 no. 3, (2022) 035034, arXiv:2204.03796 [hep-ph].
- R. A. Diaz, R. Martinez, and J. A. Rodriguez, “Phenomenology of lepton flavor violation in 2HDM(3) from (g-2)(mu) and leptonic decays,” Phys. Rev. D67 (2003) 075011, arXiv:hep-ph/0208117 [hep-ph].
- F. Jegerlehner and A. Nyffeler, “The Muon g-2,” Phys. Rept. 477 (2009) 1–110, arXiv:0902.3360 [hep-ph].
- C. Kelso, H. N. Long, R. Martinez, and F. S. Queiroz, “Connection of g−2μ𝑔subscript2𝜇g-2_{\mu}italic_g - 2 start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, electroweak, dark matter, and collider constraints on 331 models,” Phys. Rev. D90 no. 11, (2014) 113011, arXiv:1408.6203 [hep-ph].
- M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” Phys. Rept. 731 (2018) 1–82, arXiv:1610.06587 [hep-ph].
- K. Kowalska and E. M. Sessolo, “Expectations for the muon g-2 in simplified models with dark matter,” JHEP 09 (2017) 112, arXiv:1707.00753 [hep-ph].
- Muon g-2 Collaboration, B. Abi et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys. Rev. Lett. 126 no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].
- L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588 no. 7836, (2020) 61–65.
- J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ→e,γ→𝜇𝑒𝛾\mu\to e,\gammaitalic_μ → italic_e , italic_γ,” Nucl. Phys. B 618 (2001) 171–204, arXiv:hep-ph/0103065.
- A. Ibarra and G. G. Ross, “Neutrino phenomenology: The Case of two right-handed neutrinos,” Phys. Lett. B 591 (2004) 285–296, arXiv:hep-ph/0312138.
- CMS Collaboration, “Search for a standard model-like Higgs boson in the mass range between 70 and 110GeVGeV\leavevmode\nobreak\ \mathrm{GeV}roman_GeV in the diphoton final state in proton-proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” tech. rep., CERN, Geneva, 2023. https://cds.cern.ch/record/2852907.
- T. Biekötter, S. Heinemeyer, and G. Weiglein, “The CMS di-photon excess at 95 GeV in view of the LHC Run 2 results,” arXiv:2303.12018 [hep-ph].
- A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC,” Eur. Phys. J. C 63 (2009) 189–285, arXiv:0901.0002 [hep-ph].
- P. Langacker and D. London, “Lepton Number Violation and Massless Nonorthogonal Neutrinos,” Phys. Rev. D 38 (1988) 907.
- L. Lavoura, “General formulae for f(1)→f(2)+γ→𝑓1𝑓2𝛾f(1)\to f(2)+\gammaitalic_f ( 1 ) → italic_f ( 2 ) + italic_γ,” Eur. Phys. J. C 29 (2003) 191–195, arXiv:hep-ph/0302221.
- L. T. Hue, L. D. Ninh, T. T. Thuc, and N. T. T. Dat, “Exact one-loop results for li→ljγ→subscript𝑙𝑖subscript𝑙𝑗𝛾l_{i}\to l_{j}\gammaitalic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT → italic_l start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_γ in 3-3-1 models,” Eur. Phys. J. C 78 no. 2, (2018) 128, arXiv:1708.09723 [hep-ph].
- M. E. Catano, R. Martinez, and F. Ochoa, “Neutrino masses in a 331 model with right-handed neutrinos without doubly charged Higgs bosons via inverse and double seesaw mechanisms,” Phys. Rev. D86 (2012) 073015, arXiv:1206.1966 [hep-ph].
- Y. Kuno and Y. Okada, “Muon decay and physics beyond the standard model,” Rev. Mod. Phys. 73 (2001) 151–202, arXiv:hep-ph/9909265.
- C. P. Burgess, M. Pospelov, and T. ter Veldhuis, “The Minimal model of nonbaryonic dark matter: A Singlet scalar,” Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.
- J. A. Casas, D. G. Cerdeño, J. M. Moreno, and J. Quilis, “Reopening the Higgs portal for single scalar dark matter,” JHEP 05 (2017) 036, arXiv:1701.08134 [hep-ph].
- S. Bhattacharya, P. Poulose, and P. Ghosh, “Multipartite Interacting Scalar Dark Matter in the light of updated LUX data,” JCAP 04 (2017) 043, arXiv:1607.08461 [hep-ph].
- J. Edsjo and P. Gondolo, “Neutralino relic density including coannihilations,” Phys. Rev. D 56 (1997) 1879–1894, arXiv:hep-ph/9704361.
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
- M. Farina, D. Pappadopulo, and A. Strumia, “CDMS stands for Constrained Dark Matter Singlet,” Phys. Lett. B 688 (2010) 329–331, arXiv:0912.5038 [hep-ph].
- J. Giedt, A. W. Thomas, and R. D. Young, “Dark matter, the CMSSM and lattice QCD,” Phys. Rev. Lett. 103 (2009) 201802, arXiv:0907.4177 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.