Follow the Sun and Go with the Wind: Carbon Footprint Optimized Timely E-Truck Transportation (2305.11912v1)
Abstract: We study the carbon footprint optimization (CFO) of a heavy-duty e-truck traveling from an origin to a destination across a national highway network subject to a hard deadline, by optimizing path planning, speed planning, and intermediary charging planning. Such a CFO problem is essential for carbon-friendly e-truck operations. However, it is notoriously challenging to solve due to (i) the hard deadline constraint, (ii) positive battery state-of-charge constraints, (iii) non-convex carbon footprint objective, and (iv) enormous geographical and temporal charging options with diverse carbon intensity. Indeed, we show that the CFO problem is NP-hard. As a key contribution, we show that under practical settings it is equivalent to finding a generalized restricted shortest path on a stage-expanded graph, which extends the original transportation graph to model charging options. Compared to alternative approaches, our formulation incurs low model complexity and reveals a problem structure useful for algorithm design. We exploit the insights to develop an efficient dual-subgradient algorithm that always converges. As another major contribution, we prove that (i) each iteration only incurs polynomial-time complexity, albeit it requires solving an integer charging planning problem optimally, and (ii) the algorithm generates optimal results if a condition is met and solutions with bounded optimality loss otherwise. Extensive simulations based on real-world traces show that our scheme reduces up to 28% carbon footprint compared to baseline alternatives. The results also demonstrate that e-truck reduces 56% carbon footprint than internal combustion engine trucks.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.