Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On $k$-means for segments and polylines (2305.10922v1)

Published 18 May 2023 in cs.CG

Abstract: We study the problem of $k$-means clustering in the space of straight-line segments in $\mathbb{R}{2}$ under the Hausdorff distance. For this problem, we give a $(1+\epsilon)$-approximation algorithm that, for an input of $n$ segments, for any fixed $k$, and with constant success probability, runs in time $O(n+ \epsilon{-O(k)} + \epsilon{-O(k)}\cdot \log{O(k)} (\epsilon{-1}))$. The algorithm has two main ingredients. Firstly, we express the $k$-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron~\cite{Vigneron14} to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg~\cite{Feldman11, Feldman2020}. Our results can be extended to polylines of constant complexity with a running time of $O(n+ \epsilon{-O(k)})$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.