Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Approximation Scheme for Low-Dimensional $k$-Means (1708.07381v2)

Published 24 Aug 2017 in cs.DS and cs.CG

Abstract: We consider the popular $k$-means problem in $d$-dimensional Euclidean space. Recently Friggstad, Rezapour, Salavatipour [FOCS'16] and Cohen-Addad, Klein, Mathieu [FOCS'16] showed that the standard local search algorithm yields a $(1+\epsilon)$-approximation in time $(n \cdot k){1/\epsilon{O(d)}}$, giving the first polynomial-time approximation scheme for the problem in low-dimensional Euclidean space. While local search achieves optimal approximation guarantees, it is not competitive with the state-of-the-art heuristics such as the famous $k$-means++ and $D2$-sampling algorithms. In this paper, we aim at bridging the gap between theory and practice by giving a $(1+\epsilon)$-approximation algorithm for low-dimensional $k$-means running in time $n \cdot k \cdot (\log n){(d\epsilon{-1}){O(d)}}$, and so matching the running time of the $k$-means++ and $D2$-sampling heuristics up to polylogarithmic factors. We speed-up the local search approach by making a non-standard use of randomized dissections that allows to find the best local move efficiently using a quite simple dynamic program. We hope that our techniques could help design better local search heuristics for geometric problems. We note that the doubly exponential dependency on $d$ is necessary as $k$-means is APX-hard in dimension $d = \omega(\log n)$.

Citations (32)

Summary

We haven't generated a summary for this paper yet.