The Emergence Proposal and the Emergent String (2305.10490v2)
Abstract: We explore the Emergence Proposal for the moduli metric and the gauge couplings in a concrete model with 7 saxionic and 7 axionic moduli fields, namely the compactification of the type IIA superstring on a 6-dimensional toroidal orbifold. We show that consistency requires integrating out precisely the 12 towers of light particle species arising from KK and string/brane winding modes and one asymptotically tensionless string up to the species scale. After pointing out an issue with the correct definition of the species scale in the presence of string towers, we carry out the emergence computation and find that the KK and winding modes indeed impose the classical moduli dependence on the one-loop corrections, while the emergent string induces moduli dependent logarithmic suppressions. The interpretation of these results for the Emergence Proposal are discussed revealing a couple of new and still not completely settled aspects.
- E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67 (2019), no. 6, 1900037, 1903.06239.
- M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I. Valenzuela, “Lectures on the Swampland Program in String Compactifications,” 2102.01111.
- M. Graña and A. Herráez, “The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics,” Universe 7 (2021), no. 8, 273, 2107.00087.
- N. B. Agmon, A. Bedroya, M. J. Kang, and C. Vafa, “Lectures on the string landscape and the Swampland,” 2212.06187.
- H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl. Phys. B 766 (2007) 21–33, hep-th/0605264.
- F. Baume and E. Palti, “Backreacted Axion Field Ranges in String Theory,” JHEP 08 (2016) 043, 1602.06517.
- D. Kläwer and E. Palti, “Super-Planckian Spatial Field Variations and Quantum Gravity,” JHEP 01 (2017) 088, 1610.00010.
- T. W. Grimm, E. Palti, and I. Valenzuela, “Infinite Distances in Field Space and Massless Towers of States,” JHEP 08 (2018) 143, 1802.08264.
- R. Blumenhagen, D. Kläwer, L. Schlechter, and F. Wolf, “The Refined Swampland Distance Conjecture in Calabi-Yau Moduli Spaces,” JHEP 06 (2018) 052, 1803.04989.
- T. W. Grimm, C. Li, and E. Palti, “Infinite Distance Networks in Field Space and Charge Orbits,” JHEP 03 (2019) 016, 1811.02571.
- P. Corvilain, T. W. Grimm, and I. Valenzuela, “The Swampland Distance Conjecture for Kähler moduli,” JHEP 08 (2019) 075, 1812.07548.
- A. Joshi and A. Klemm, “Swampland Distance Conjecture for One-Parameter Calabi-Yau Threefolds,” JHEP 08 (2019) 086, 1903.00596.
- F. Marchesano and M. Wiesner, “Instantons and infinite distances,” JHEP 08 (2019) 088, 1904.04848.
- A. Font, A. Herráez, and L. E. Ibáñez, “The Swampland Distance Conjecture and Towers of Tensionless Branes,” JHEP 08 (2019) 044, 1904.05379.
- D. Erkinger and J. Knapp, “Refined swampland distance conjecture and exotic hybrid Calabi-Yaus,” JHEP 07 (2019) 029, 1905.05225.
- S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings from infinite distance limits,” JHEP 02 (2022) 190, 1910.01135.
- F. Baume, F. Marchesano, and M. Wiesner, “Instanton Corrections and Emergent Strings,” JHEP 04 (2020) 174, 1912.02218.
- D. Lüst, E. Palti, and C. Vafa, “AdS and the Swampland,” Phys. Lett. B 797 (2019) 134867, 1906.05225.
- N. Cribiori, D. Lüst, and M. Scalisi, “The gravitino and the swampland,” JHEP 06 (2021) 071, 2104.08288.
- A. Castellano, A. Font, A. Herraez, and L. E. Ibáñez, “A gravitino distance conjecture,” JHEP 08 (2021) 092, 2104.10181.
- B. Heidenreich, M. Reece, and T. Rudelius, “The Weak Gravity Conjecture and Emergence from an Ultraviolet Cutoff,” Eur. Phys. J. C 78 (2018), no. 4, 337, 1712.01868.
- B. Heidenreich, M. Reece, and T. Rudelius, “Emergence of Weak Coupling at Large Distance in Quantum Gravity,” Phys. Rev. Lett. 121 (2018), no. 5, 051601, 1802.08698.
- A. Castellano, A. Herráez, and L. E. Ibáñez, “IR/UV mixing, towers of species and swampland conjectures,” JHEP 08 (2022) 217, 2112.10796.
- A. Castellano, A. Herráez, and L. E. Ibáñez, “The Emergence Proposal in Quantum Gravity and the Species Scale,” 2212.03908.
- R. Blumenhagen, D. Kläwer, and L. Schlechter, “Swampland Variations on a Theme by KKLT,” JHEP 05 (2019) 152, 1902.07724.
- R. Blumenhagen, M. Brinkmann, and A. Makridou, “Quantum Log-Corrections to Swampland Conjectures,” JHEP 02 (2020) 064, 1910.10185.
- G. Dvali, “Black Holes and Large N Species Solution to the Hierarchy Problem,” Fortsch. Phys. 58 (2010) 528–536, 0706.2050.
- G. Dvali and M. Redi, “Black Hole Bound on the Number of Species and Quantum Gravity at LHC,” Phys. Rev. D 77 (2008) 045027, 0710.4344.
- D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Moduli-dependent Species Scale,” 2212.06841.
- N. Cribiori, D. Lüst, and G. Staudt, “Black hole entropy and moduli-dependent species scale,” 2212.10286.
- D. van de Heisteeg, C. Vafa, and M. Wiesner, “Bounds on Species Scale and the Distance Conjecture,” 2303.13580.
- D. Andriot, “Bumping into the species scale with the scalar potential,” 2305.07480.
- D. van de Heisteeg, C. Vafa, M. Wiesner, and D. H. Wu, “Bounds on Field Range for Slowly Varying Positive Potentials,” 2305.07701.
- A. Castellano, A. Herráez, and L. E. Ibáñez, “Towers and Hierarchies in the Standard Model from Emergence in Quantum Gravity,” 2302.00017.
- S.-J. Lee, W. Lerche, and T. Weigand, “Tensionless Strings and the Weak Gravity Conjecture,” JHEP 10 (2018) 164, 1808.05958.
- S.-J. Lee, W. Lerche, and T. Weigand, “Emergent strings, duality and weak coupling limits for two-form fields,” JHEP 02 (2022) 096, 1904.06344.
- S. Lanza, F. Marchesano, L. Martucci, and I. Valenzuela, “The EFT stringy viewpoint on large distances,” JHEP 09 (2021) 197, 2104.05726.
- Theoretical and Mathematical Physics. Springer, Heidelberg, Germany, 2013.
- J. Polchinski, String theory. Vol. 2: Superstring theory and beyond. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.
- S. Ferrara and S. Sabharwal, “Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces,” Nuclear Physics B 332 (1990), no. 2, 317–332.
- T. W. Grimm and J. Louis, “The Effective action of type IIA Calabi-Yau orientifolds,” Nucl. Phys. B 718 (2005) 153–202, hep-th/0412277.
- T. W. Grimm and J. Louis, “The Effective action of N = 1 Calabi-Yau orientifolds,” Nucl. Phys. B 699 (2004) 387–426, hep-th/0403067.
- M. Bodner, A. C. Cadavid, and S. Ferrara, “(2,2) vacuum configurations for type IIA superstrings: N=2 supergravity Lagrangians and algebraic geometry,” Class. Quant. Grav. 8 (1991) 789–808.
- R. Blumenhagen, D. Lüst, and T. R. Taylor, “Moduli stabilization in chiral type IIB orientifold models with fluxes,” Nucl. Phys. B 663 (2003) 319–342, hep-th/0303016.
- J. F. Donoghue, “General relativity as an effective field theory: The leading quantum corrections,” Phys. Rev. D 50 (1994) 3874–3888, gr-qc/9405057.
- G. Dvali and C. Gomez, “Species and Strings,” 1004.3744.
- F. Marchesano and L. Melotti, “EFT strings and emergence,” JHEP 02 (2023) 112, 2211.01409.
- D. J. Gross, “High-Energy Symmetries of String Theory,” Phys. Rev. Lett. 60 (1988) 1229.
- J. J. Atick and E. Witten, “The Hagedorn Transition and the Number of Degrees of Freedom of String Theory,” Nucl. Phys. B 310 (1988) 291–334.
- R. d. Sorkin, “Kaluza-Klein Monopole,” Phys. Rev. Lett. 51 (1983) 87–90.
- D. J. Gross and M. J. Perry, “Magnetic Monopoles in Kaluza-Klein Theories,” Nucl. Phys. B 226 (1983) 29–48.
- E. Plauschinn, “Non-geometric backgrounds in string theory,” Phys. Rept. 798 (2019) 1–122, 1811.11203.
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics 5 (1996) 329–359.
- E. Kiritsis and C. Kounnas, “Infrared regularization of superstring theory and the one loop calculation of coupling constants,” Nucl. Phys. B 442 (1995) 472–493, hep-th/9501020.
- E. Kohlprath, “Renormalization of the Planck mass for type II superstrings on symmetric orbifolds,” JHEP 10 (2002) 026, hep-th/0207023.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.