Spatially homogeneous teleparallel spacetimes with four-dimensional groups of motions (2305.06997v2)
Abstract: We study metric teleparallel geometries, which can either be defined through a Lorentzian metric and flat, metric-compatible affine connection, or a tetrad and a flat spin connection, which are invariant under the transitive action of a four-dimensional Lie group on their spatial equal-time hypersurfaces. There are three such group actions, and their corresponding spatial hypersurfaces belong to the Bianchi types II, III and IX, respectively. For each of these three symmetry groups, we determine the most general teleparallel geometry, and find that it is parametrized by six functions of time, one of which can be eliminated by the choice of the time coordinate. We further show that these geometries are unique up to global Lorentz transformations, coordinate transformations and changes of the choice of the parameter functions.
- E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 (2021) no.15, 153001 [arXiv:2103.01183 [astro-ph.CO]].
- L. Heisenberg, “A systematic approach to generalisations of General Relativity and their cosmological implications,” Phys. Rept. 796 (2019), 1-113 [arXiv:1807.01725 [gr-qc]].
- R. Aldrovandi and J. G. Pereira, “Teleparallel Gravity: An Introduction,” Springer, 2013, ISBN 978-94-007-5142-2, 978-94-007-5143-9
- A. Golovnev, “Introduction to teleparallel gravities,” [arXiv:1801.06929 [gr-qc]].
- M. Hohmann, “Teleparallel gravity,” Lect. Notes Phys. 1017 (2023), 145-198 [arXiv:2207.06438 [gr-qc]].
- M. Hohmann, “Complete classification of cosmological teleparallel geometries,” Int. J. Geom. Meth. Mod. Phys. 18 (2021) no.supp01, 2140005 [arXiv:2008.12186 [gr-qc]].
- A. A. Coley, R. J. van den Hoogen and D. D. McNutt, “Symmetric teleparallel geometries,” Class. Quant. Grav. 39 (2022) no.22, 22LT01 [arXiv:2205.10719 [gr-qc]].
- S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. Levi Said, J. Mifsud and E. Di Valentino, “Teleparallel gravity: from theory to cosmology,” Rept. Prog. Phys. 86 (2023) no.2, 026901 [arXiv:2106.13793 [gr-qc]].
- Y. F. Cai, S. Capozziello, M. De Laurentis and E. N. Saridakis, “f(T) teleparallel gravity and cosmology,” Rept. Prog. Phys. 79 (2016) no.10, 106901 [arXiv:1511.07586 [gr-qc]].
- H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Prog. Theor. Phys. Suppl. 78 (1984), 1-166.
- V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, “Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions,” Phys. Rept. 215 (1992), 203-333.
- K. A. Malik and D. Wands, “Cosmological perturbations,” Phys. Rept. 475 (2009), 1-51 [arXiv:0809.4944 [astro-ph]].
- A. Golovnev and T. Koivisto, “Cosmological perturbations in modified teleparallel gravity models,” JCAP 11 (2018), 012 [arXiv:1808.05565 [gr-qc]].
- A. Golovnev and M. J. Guzmán, “Foundational issues in f(T) gravity theory,” Int. J. Geom. Meth. Mod. Phys. 18 (2021) no.supp01, 2140007 [arXiv:2012.14408 [gr-qc]].
- J. Beltrán Jiménez, A. Golovnev, T. Koivisto and H. Veermäe, “Minkowski space in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” Phys. Rev. D 103 (2021) no.2, 024054 [arXiv:2004.07536 [gr-qc]].
- M. Blagojević and J. M. Nester, “Local symmetries and physical degrees of freedom in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity: a Dirac Hamiltonian constraint analysis,” Phys. Rev. D 102 (2020) no.6, 064025 [arXiv:2006.15303 [gr-qc]].
- M. J. Guzmán and R. Ferraro, “Degrees of freedom and Hamiltonian formalism for f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” Int. J. Mod. Phys. A 35 (2020) no.02n03, 2040022 [arXiv:1910.03100 [gr-qc]].
- J. Beltrán Jiménez and K. F. Dialektopoulos, “Non-Linear Obstructions for Consistent New General Relativity,” JCAP 01 (2020), 018 [arXiv:1907.10038 [gr-qc]].
- S. Bahamonde, K. F. Dialektopoulos, M. Hohmann, J. Levi Said, C. Pfeifer and E. N. Saridakis, “Perturbations in non-flat cosmology for f(T) gravity,” Eur. Phys. J. C 83 (2023) no.3, 193 [arXiv:2203.00619 [gr-qc]].
- A. Golovnev and M. J. Guzman, “Nontrivial Minkowski backgrounds in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” Phys. Rev. D 103 (2021) no.4, 044009 [arXiv:2012.00696 [gr-qc]].
- M. Li and H. Rao, “Irregular universe in the Nieh-Yan modified teleparallel gravity,” Phys. Lett. B 841 (2023), 137929 [arXiv:2301.02847 [gr-qc]].
- M. E. Rodrigues, M. J. S. Houndjo, D. Saez-Gomez and F. Rahaman, “Anisotropic Universe Models in f(T) Gravity,” Phys. Rev. D 86 (2012), 104059 [arXiv:1209.4859 [gr-qc]].
- M. E. Rodrigues, A. V. Kpadonou, F. Rahaman, P. J. Oliveira and M. J. S. Houndjo, “Bianchi type-I, type-III and Kantowski-Sachs solutions in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” Astrophys. Space Sci. 357 (2015) no.2, 129 [arXiv:1408.2689 [gr-qc]].
- A. Paliathanasis, “Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry,” Symmetry 14 (2022) no.10, 1974 [arXiv:2209.08817 [gr-qc]].
- M. J. Amir and M. Yussouf, “Kantowski-Sachs Universe Models in f(T)𝑓𝑇f(T)italic_f ( italic_T ) Theory of Gravity,” Int. J. Theor. Phys. 54 (2015) no.8, 2798-2812 [arXiv:1502.00777 [gr-qc]].
- M. Sharif and S. Rani, “F(T) Models within Bianchi Type I Universe,” Mod. Phys. Lett. A 26 (2011), 1657-1671 [arXiv:1105.6228 [gr-qc]].
- V. Fayaz, H. Hossienkhani, A. Farmany, M. Amirabadi and N. Azimi, “Cosmology of f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity in a holographic dark energy and nonisotropic background,” Astrophys. Space Sci. 351 (2014), 299-306.
- V. Fayaz, H. Hossienkhani, A. Pasqua, M. Amirabadi and M. Ganji, “f(T) theories from holographic dark energy models within Bianchi type I universe,” Eur. Phys. J. Plus 130, no.2, 28 (2015).
- M. A. Skugoreva and A. V. Toporensky, “On Kasner solution in Bianchi I f(T)𝑓𝑇f(T)italic_f ( italic_T ) cosmology,” Eur. Phys. J. C 78 (2018) no.5, 377 [arXiv:1711.07069 [gr-qc]].
- M. A. Skugoreva and A. V. Toporensky, “Anisotropic cosmological dynamics in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity in the presence of a perfect fluid,” Eur. Phys. J. C 79 (2019) no.10, 813 [arXiv:1907.12538 [gr-qc]].
- P. V. Tretyakov, “Bianchi I cosmological solutions in teleparallel gravity,” Mod. Phys. Lett. A 37 (2022) no.08, 2250046 [arXiv:2109.14457 [gr-qc]].
- M. E. Rodrigues, I. G. Salako, M. J. S. Houndjo and J. Tossa, “Locally Rotationally Symmetric Bianchi Type-I cosmological model in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity: from early to Dark Energy dominated universe,” Int. J. Mod. Phys. D 23 (2014), 1450004 [arXiv:1308.2962 [gr-qc]].
- A. Aslam, M. Jamil and R. Myrzakulov, “Noether gauge symmetry for the Bianchi type I model in f(T)𝑓𝑇f(T)italic_f ( italic_T ) gravity,” Phys. Scripta 88 (2013), 025003 [arXiv:1308.0325 [gr-qc]].
- A. Paliathanasis, J. D. Barrow and P. G. L. Leach, “Cosmological Solutions of f(T)𝑓𝑇f(T)italic_f ( italic_T ) Gravity,” Phys. Rev. D 94 (2016) no.2, 023525 [arXiv:1606.00659 [gr-qc]].
- A. Paliathanasis, J. Levi Said and J. D. Barrow, “Stability of the Kasner Universe in f(T) Gravity,” Phys. Rev. D 97 (2018) no.4, 044008 [arXiv:1709.03432 [gr-qc]].
- A. A. Coley and R. J. van den Hoogen, “Spatially Homogeneous Teleparallel Gravity: Bianchi I,” [arXiv:2305.12168 [gr-qc]].
- L. Bianchi, “Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti,” Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, Serie Terza, Tomo XI, pp. 267–352 (1898).
- L. Bianchi, “On the Three-Dimensional Spaces Which Admit a Continuous Group of Motions,” General Relativity and Gravitation 33 (2001) 2171–2253.
- M. Hohmann, L. Järv, M. Krššák and C. Pfeifer, “Modified teleparallel theories of gravity in symmetric spacetimes,” Phys. Rev. D 100 (2019) no.8, 084002 arXiv:1901.05472 [gr-qc]].
- D. D. McNutt, A. A. Coley and R. J. v. Hoogen, “A frame based approach to computing symmetries with non-trivial isotropy groups,” J. Math. Phys. 64 (2023) no.3, 2881713 [arXiv:2302.11493 [gr-qc]].
- M. Hohmann, “A geometric view on local Lorentz transformations in teleparallel gravity,” Int. J. Geom. Meth. Mod. Phys. 19 (2022) no.Supp01, 2240001 [arXiv:2112.15173 [gr-qc]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.