Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Data quality dimensions for fair AI (2305.06967v2)

Published 11 May 2023 in cs.AI and cs.LO

Abstract: AI systems are not intrinsically neutral and biases trickle in any type of technological tool. In particular when dealing with people, the impact of AI algorithms' technical errors originating with mislabeled data is undeniable. As they feed wrong and discriminatory classifications, these systems are not systematically guarded against bias. In this article we consider the problem of bias in AI systems from the point of view of data quality dimensions. We highlight the limited model construction of bias mitigation tools based on accuracy strategy, illustrating potential improvements of a specific tool in gender classification errors occurring in two typically difficult contexts: the classification of non-binary individuals, for which the label set becomes incomplete with respect to the dataset; and the classification of transgender individuals, for which the dataset becomes inconsistent with respect to the label set. Using formal methods for reasoning about the behavior of the classification system in presence of a changing world, we propose to reconsider the fairness of the classification task in terms of completeness, consistency, timeliness and reliability, and offer some theoretical results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com