Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of Question Answering Models (2305.06841v2)

Published 11 May 2023 in cs.CL and cs.AI

Abstract: While the LLMs dominate a majority of language understanding tasks, previous work shows that some of these results are supported by modelling spurious correlations of training datasets. Authors commonly assess model robustness by evaluating their models on out-of-distribution (OOD) datasets of the same task, but these datasets might share the bias of the training dataset. We propose a simple method for measuring a scale of models' reliance on any identified spurious feature and assess the robustness towards a large set of known and newly found prediction biases for various pre-trained models and debiasing methods in Question Answering (QA). We find that while existing debiasing methods can mitigate reliance on a chosen spurious feature, the OOD performance gains of these methods can not be explained by mitigated reliance on biased features, suggesting that biases are shared among different QA datasets. Finally, we evidence this to be the case by measuring that the performance of models trained on different QA datasets relies comparably on the same bias features. We hope these results will motivate future work to refine the reports of LMs' robustness to a level of adversarial samples addressing specific spurious features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lukáš Mikula (1 paper)
  2. Michal Štefánik (32 papers)
  3. Marek Petrovič (1 paper)
  4. Petr Sojka (24 papers)
Citations (2)