Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Look to the Right: Mitigating Relative Position Bias in Extractive Question Answering (2210.14541v1)

Published 26 Oct 2022 in cs.CL

Abstract: Extractive question answering (QA) models tend to exploit spurious correlations to make predictions when a training set has unintended biases. This tendency results in models not being generalizable to examples where the correlations do not hold. Determining the spurious correlations QA models can exploit is crucial in building generalizable QA models in real-world applications; moreover, a method needs to be developed that prevents these models from learning the spurious correlations even when a training set is biased. In this study, we discovered that the relative position of an answer, which is defined as the relative distance from an answer span to the closest question-context overlap word, can be exploited by QA models as superficial cues for making predictions. Specifically, we find that when the relative positions in a training set are biased, the performance on examples with relative positions unseen during training is significantly degraded. To mitigate the performance degradation for unseen relative positions, we propose an ensemble-based debiasing method that does not require prior knowledge about the distribution of relative positions. We demonstrate that the proposed method mitigates the models' reliance on relative positions using the biased and full SQuAD dataset. We hope that this study can help enhance the generalization ability of QA models in real-world applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kazutoshi Shinoda (9 papers)
  2. Saku Sugawara (29 papers)
  3. Akiko Aizawa (74 papers)
Citations (7)