Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

UQ for Credit Risk Management: A deep evidence regression approach (2305.04967v2)

Published 8 May 2023 in q-fin.RM, cs.CE, and cs.LG

Abstract: Machine Learning has invariantly found its way into various Credit Risk applications. Due to the intrinsic nature of Credit Risk, quantifying the uncertainty of the predicted risk metrics is essential, and applying uncertainty-aware deep learning models to credit risk settings can be very helpful. In this work, we have explored the application of a scalable UQ-aware deep learning technique, Deep Evidence Regression and applied it to predicting Loss Given Default. We contribute to the literature by extending the Deep Evidence Regression methodology to learning target variables generated by a Weibull process and provide the relevant learning framework. We demonstrate the application of our approach to both simulated and real-world data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)