Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refining the Responses of LLMs by Themselves (2305.04039v1)

Published 6 May 2023 in cs.CL and cs.AI

Abstract: In this paper, we propose a simple yet efficient approach based on prompt engineering that leverages the LLM itself to optimize its answers without relying on auxiliary models. We introduce an iterative self-evaluating optimization mechanism, with the potential for improved output quality as iterations progress, removing the need for manual intervention. The experiment's findings indicate that utilizing our response refinement framework on the GPT-3.5 model yields results that are on par with, or even surpass, those generated by the cutting-edge GPT-4 model. Detailed implementation strategies and illustrative examples are provided to demonstrate the superiority of our proposed solution.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com