Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Quadtree, a Steiner Spanner, and Approximate Nearest Neighbours in Hyperbolic Space (2305.01356v2)

Published 2 May 2023 in cs.CG

Abstract: We propose a data structure in $d$-dimensional hyperbolic space that can be considered a natural counterpart to quadtrees in Euclidean spaces. Based on this data structure we propose a so-called L-order for hyperbolic point sets, which is an extension of the Z-order defined in Euclidean spaces. Using these quadtrees and the L-order we build geometric spanners. Near-linear size $(1+\epsilon)$-spanners do not exist in hyperbolic spaces, but we are able to create a Steiner spanner that achieves a spanning ratio of $1+\epsilon$ with $\mathcal O_{d,\epsilon}(n)$ edges, using a simple construction that can be maintained dynamically. As a corollary we also get a $(2+\epsilon)$-spanner (in the classical sense) of the same size, where the spanning ratio $2+\epsilon$ is almost optimal among spanners of subquadratic size. Finally, we show that our Steiner spanner directly provides a solution to the approximate nearest neighbour problem: given a point set $P$ in $d$-dimensional hyperbolic space we build the data structure in $\mathcal O_{d,\epsilon}(n\log n)$ time, using $\mathcal O_{d,\epsilon}(n)$ space. Then for any query point $q$ we can find a point $p\in P$ that is at most $1+\epsilon$ times farther from $q$ than its nearest neighbour in $P$ in $\mathcal O_{d,\epsilon}(\log n)$ time. Moreover, the data structure is dynamic and can handle point insertions and deletions with update time $\mathcal O_{d,\epsilon}(\log n)$.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com