Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Communication Complexity of Matching: EDCS Achieves 5/6 Approximation (2305.01070v1)

Published 1 May 2023 in cs.DS

Abstract: We study the robust communication complexity of maximum matching. Edges of an arbitrary $n$-vertex graph $G$ are randomly partitioned between Alice and Bob independently and uniformly. Alice has to send a single message to Bob such that Bob can find an (approximate) maximum matching of the whole graph $G$. We specifically study the best approximation ratio achievable via protocols where Alice communicates only $\widetilde{O}(n)$ bits to Bob. There has been a growing interest on the robust communication model due to its connections to the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP'21] implies a $(2/3+\epsilon_0 \sim .667)$-approximation for a small constant $0 < \epsilon_0 < 10{-18}$, which remains the best-known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad [Random'21] improved the approximation to .716 albeit with a computationally inefficient (i.e., exponential time) protocol. In this paper, we study a natural and efficient protocol implied by a random-order streaming algorithm of Bernstein [ICALP'20] which is based on edge-degree constrained subgraphs (EDCS) [Bernstein and Stein; ICALP'15]. The result of Bernstein immediately implies that this protocol achieves an (almost) $(2/3 \sim .666)$-approximation in the robust communication model. We present a new analysis, proving that it achieves a much better (almost) $(5/6 \sim .833)$-approximation. This significantly improves previous approximations both for general and bipartite graphs. We also prove that our analysis of Bernstein's protocol is tight.

Citations (4)

Summary

We haven't generated a summary for this paper yet.