Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Algorithms for Maximum Matching Size (2207.07607v2)

Published 15 Jul 2022 in cs.DS

Abstract: We study fully dynamic algorithms for maximum matching. This is a well-studied problem, known to admit several update-time/approximation trade-offs. For instance, it is known how to maintain a 1/2-approximate matching in $\log{O(1)} n$ update time or a $2/3$-approximate matching in $O(\sqrt{n})$ update time, where $n$ is the number of vertices. It has been a long-standing open problem to determine whether either of these bounds can be improved. In this paper, we show that when the goal is to maintain just the size of the matching (and not its edge-set), then these bounds can indeed be improved. First, we give an algorithm that takes $\log{O(1)} n$ update-time and maintains a $.501$-approximation ($.585$-approximation if the graph is bipartite). Second, we give an algorithm that maintains a $(2/3 + \Omega(1))$-approximation in $O(\sqrt{n})$ time for bipartite graphs. Our results build on new connections to sublinear time algorithms. In particular, a key tool for both is an algorithm of the author for estimating the size of maximal matchings in $\widetilde{O}(n)$ time [Behnezhad; FOCS 2021]. Our second result also builds on the edge-degree constrained subgraph (EDCS) of Bernstein and Stein [ICALP'15, SODA'16]. In particular, while it has been known that EDCS may not include a better than 2/3-approximation, we give a new characterization of such tight instances which allows us to break it. We believe this characterization might be of independent interest.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com