Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Complex evaluation of angular power spectra: Going beyond the Limber approximation (2304.13064v1)

Published 25 Apr 2023 in astro-ph.CO, math-ph, and math.MP

Abstract: Angular power spectra are central to the study of our Universe. In this paper, I develop a new method for the numeric evaluation and analytic estimation of the angular cross-power spectrum of two random fields using complex analysis and Picard- Lefschetz theory. The proposed continuous deformation of the integration domain resums the highly oscillatory integral into a convex integral whose integrand decays exponentially. This deformed integral can be quickly evaluated with conventional integration techniques. These methods can be used to quickly evaluate and estimate the angular power spectrum from the three-dimensional power spectrum for all angles (or multipole moments). This method is especially useful for narrow redshift bins, or samples with small redshift overlap, for which the Limber approximation has a large error.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)