Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

STM-UNet: An Efficient U-shaped Architecture Based on Swin Transformer and Multi-scale MLP for Medical Image Segmentation (2304.12615v1)

Published 25 Apr 2023 in eess.IV and cs.CV

Abstract: Automated medical image segmentation can assist doctors to diagnose faster and more accurate. Deep learning based models for medical image segmentation have made great progress in recent years. However, the existing models fail to effectively leverage Transformer and MLP for improving U-shaped architecture efficiently. In addition, the multi-scale features of the MLP have not been fully extracted in the bottleneck of U-shaped architecture. In this paper, we propose an efficient U-shaped architecture based on Swin Transformer and multi-scale MLP, namely STM-UNet. Specifically, the Swin Transformer block is added to skip connection of STM-UNet in form of residual connection, which can enhance the modeling ability of global features and long-range dependency. Meanwhile, a novel PCAS-MLP with parallel convolution module is designed and placed into the bottleneck of our architecture to contribute to the improvement of segmentation performance. The experimental results on ISIC 2016 and ISIC 2018 demonstrate the effectiveness of our proposed method. Our method also outperforms several state-of-the-art methods in terms of IoU and Dice. Our method has achieved a better trade-off between high segmentation accuracy and low model complexity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.