Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Img2Vec: A Teacher of High Token-Diversity Helps Masked AutoEncoders (2304.12535v1)

Published 25 Apr 2023 in cs.CV

Abstract: We present a pipeline of Image to Vector (Img2Vec) for masked image modeling (MIM) with deep features. To study which type of deep features is appropriate for MIM as a learning target, we propose a simple MIM framework with serials of well-trained self-supervised models to convert an Image to a feature Vector as the learning target of MIM, where the feature extractor is also known as a teacher model. Surprisingly, we empirically find that an MIM model benefits more from image features generated by some lighter models (e.g., ResNet-50, 26M) than from those by a cumbersome teacher like Transformer-based models (e.g., ViT-Large, 307M). To analyze this remarkable phenomenon, we devise a novel attribute, token diversity, to evaluate the characteristics of generated features from different models. Token diversity measures the feature dissimilarity among different tokens. Through extensive experiments and visualizations, we hypothesize that beyond the acknowledgment that a large model can improve MIM, a high token-diversity of a teacher model is also crucial. Based on the above discussion, Img2Vec adopts a teacher model with high token-diversity to generate image features. Img2Vec pre-trained on ImageNet unlabeled data with ViT-B yields 85.1\% top-1 accuracy on fine-tuning. Moreover, we scale up Img2Vec on larger models, ViT-L and ViT-H, and get $86.7\%$ and $87.5\%$ accuracy respectively. It also achieves state-of-the-art results on other downstream tasks, e.g., 51.8\% mAP on COCO and 50.7\% mIoU on ADE20K. Img2Vec is a simple yet effective framework tailored to deep feature MIM learning, accomplishing superb comprehensive performance on representative vision tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Heng Pan (14 papers)
  2. Chenyang Liu (26 papers)
  3. Wenxiao Wang (63 papers)
  4. Li Yuan (141 papers)
  5. Hongfa Wang (29 papers)
  6. Zhifeng Li (74 papers)
  7. Wei Liu (1135 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com