Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast MRI Reconstruction via Edge Attention (2304.11400v1)

Published 22 Apr 2023 in eess.IV and cs.CV

Abstract: Fast and accurate MRI reconstruction is a key concern in modern clinical practice. Recently, numerous Deep-Learning methods have been proposed for MRI reconstruction, however, they usually fail to reconstruct sharp details from the subsampled k-space data. To solve this problem, we propose a lightweight and accurate Edge Attention MRI Reconstruction Network (EAMRI) to reconstruct images with edge guidance. Specifically, we design an efficient Edge Prediction Network to directly predict accurate edges from the blurred image. Meanwhile, we propose a novel Edge Attention Module (EAM) to guide the image reconstruction utilizing the extracted edge priors, as inspired by the popular self-attention mechanism. EAM first projects the input image and edges into Q_image, K_edge, and V_image, respectively. Then EAM pairs the Q_image with K_edge along the channel dimension, such that 1) it can search globally for the high-frequency image features that are activated by the edge priors; 2) the overall computation burdens are largely reduced compared with the traditional spatial-wise attention. With the help of EAM, the predicted edge priors can effectively guide the model to reconstruct high-quality MR images with accurate edges. Extensive experiments show that our proposed EAMRI outperforms other methods with fewer parameters and can recover more accurate edges.

Citations (3)

Summary

We haven't generated a summary for this paper yet.