Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjugate variables approach to mixed $q$-Araki-Woods algebras: Factoriality and non-injectivity (2304.11108v2)

Published 21 Apr 2023 in math.OA and math.FA

Abstract: We establish factoriality and non-injectivity in full generality for the mixed $q$-Araki-Woods von Neumann algebra associated to a separable real Hilbert space $\mathsf{H}{\mathbf{R}}$ with $\dim\mathsf{H}{\mathbf{R}}\geq 2$, a strongly continuous one parameter group of orthogonal transformations on $\mathsf{H}\mathbb{R}$, a direct sum decomposition $\mathsf{H}{\mathbf{R}}=\oplus_{i}\mathsf{H}{\mathbb{R}}{(i)}$, and a real symmetric matrix $(q{ij})$ with $q=\sup_{i,j}|q_{ij}|<1$. This is achieved by first proving the existence of conjugate variables for a finite number of generators of the algebras, following the lines of Miyagawa-Speicher and Kumar-Skalski-Wasilewski. The conjugate variables belong to the factors in question and satisfy certain Lipschitz condition.

Summary

We haven't generated a summary for this paper yet.