Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Remarks on factoriality and $q$-deformations (1607.04027v2)

Published 14 Jul 2016 in math.OA and math.FA

Abstract: We prove that the mixed $q$-Gaussian algebra $\Gamma_{Q}(H_{\mathbb{R}})$ associated to a real Hilbert space $H_{\mathbb{R}}$ and a real symmetric matrix $Q=(q_{ij})$ with $\sup|q_{ij}|<1$, is a factor as soon as $\dim H_{\mathbb{R}}\geq2$. We also discuss the factoriality of $q$-deformed Araki-Woods algebras, in particular showing that the $q$-deformed Araki-Woods algebra $\Gamma_{q}(H_{\mathbb{R}},U_{t})$ given by a real Hilbert space $H_{\mathbb{R}}$ and a strongly continuous group $U_{t}$ is a factor when $\dim H_{\mathbb{R}}\geq2$ and $U_{t}$ admits an invariant eigenvector.

Summary

We haven't generated a summary for this paper yet.