Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Knowledge Distillation Under Ideal Joint Classifier Assumption (2304.11004v3)

Published 19 Apr 2023 in cs.LG

Abstract: Knowledge distillation constitutes a potent methodology for condensing substantial neural networks into more compact and efficient counterparts. Within this context, softmax regression representation learning serves as a widely embraced approach, leveraging a pre-established teacher network to guide the learning process of a diminutive student network. Notably, despite the extensive inquiry into the efficacy of softmax regression representation learning, the intricate underpinnings governing the knowledge transfer mechanism remain inadequately elucidated. This study introduces the 'Ideal Joint Classifier Knowledge Distillation' (IJCKD) framework, an overarching paradigm that not only furnishes a lucid and exhaustive comprehension of prevailing knowledge distillation techniques but also establishes a theoretical underpinning for prospective investigations. Employing mathematical methodologies derived from domain adaptation theory, this investigation conducts a comprehensive examination of the error boundary of the student network contingent upon the teacher network. Consequently, our framework facilitates efficient knowledge transference between teacher and student networks, thereby accommodating a diverse spectrum of applications.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.