Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generate your neural signals from mine: individual-to-individual EEG converters (2304.10736v1)

Published 21 Apr 2023 in q-bio.NC, cs.CV, and cs.HC

Abstract: Most models in cognitive and computational neuroscience trained on one subject do not generalize to other subjects due to individual differences. An ideal individual-to-individual neural converter is expected to generate real neural signals of one subject from those of another one, which can overcome the problem of individual differences for cognitive and computational models. In this study, we propose a novel individual-to-individual EEG converter, called EEG2EEG, inspired by generative models in computer vision. We applied THINGS EEG2 dataset to train and test 72 independent EEG2EEG models corresponding to 72 pairs across 9 subjects. Our results demonstrate that EEG2EEG is able to effectively learn the mapping of neural representations in EEG signals from one subject to another and achieve high conversion performance. Additionally, the generated EEG signals contain clearer representations of visual information than that can be obtained from real data. This method establishes a novel and state-of-the-art framework for neural conversion of EEG signals, which can realize a flexible and high-performance mapping from individual to individual and provide insight for both neural engineering and cognitive neuroscience.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com