Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SLEPLET: Slepian Scale-Discretised Wavelets in Python (2304.10680v1)

Published 20 Apr 2023 in cs.IT, astro-ph.IM, cs.NA, math.IT, and math.NA

Abstract: Wavelets are widely used in various disciplines to analyse signals both in space and scale. Whilst many fields measure data on manifolds (i.e., the sphere), often data are only observed on a partial region of the manifold. Wavelets are a typical approach to data of this form, but the wavelet coefficients that overlap with the boundary become contaminated and must be removed for accurate analysis. Another approach is to estimate the region of missing data and to use existing whole-manifold methods for analysis. However, both approaches introduce uncertainty into any analysis. Slepian wavelets enable one to work directly with only the data present, thus avoiding the problems discussed above. Applications of Slepian wavelets to areas of research measuring data on the partial sphere include gravitational/magnetic fields in geodesy, ground-based measurements in astronomy, measurements of whole-planet properties in planetary science, geomagnetism of the Earth, and cosmic microwave background analyses.

Summary

We haven't generated a summary for this paper yet.