Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slepian Scale-Discretised Wavelets on Manifolds (2302.06006v2)

Published 12 Feb 2023 in cs.IT, astro-ph.IM, cs.NA, math.IT, and math.NA

Abstract: Inspired by recent interest in geometric deep learning, this work generalises the recently developed Slepian scale-discretised wavelets on the sphere to Riemannian manifolds. Through the sifting convolution, one may define translations and, thus, convolutions on manifolds - which are otherwise not well-defined in general. Slepian wavelets are constructed on a region of a manifold and are therefore suited to problems where data only exists in a particular region. The Slepian functions, on which Slepian wavelets are built, are the basis functions of the Slepian spatial-spectral concentration problem on the manifold. A tiling of the Slepian harmonic line with smoothly decreasing generating functions defines the scale-discretised wavelets; allowing one to probe spatially localised, scale-dependent features of a signal. By discretising manifolds as graphs, the Slepian functions and wavelets of a triangular mesh are presented. Through a wavelet transform, the wavelet coefficients of a field defined on the mesh are found and used in a straightforward thresholding denoising scheme.

Citations (2)

Summary

We haven't generated a summary for this paper yet.