Papers
Topics
Authors
Recent
2000 character limit reached

Slepian Scale-Discretised Wavelets on Manifolds

Published 12 Feb 2023 in cs.IT, astro-ph.IM, cs.NA, math.IT, and math.NA | (2302.06006v2)

Abstract: Inspired by recent interest in geometric deep learning, this work generalises the recently developed Slepian scale-discretised wavelets on the sphere to Riemannian manifolds. Through the sifting convolution, one may define translations and, thus, convolutions on manifolds - which are otherwise not well-defined in general. Slepian wavelets are constructed on a region of a manifold and are therefore suited to problems where data only exists in a particular region. The Slepian functions, on which Slepian wavelets are built, are the basis functions of the Slepian spatial-spectral concentration problem on the manifold. A tiling of the Slepian harmonic line with smoothly decreasing generating functions defines the scale-discretised wavelets; allowing one to probe spatially localised, scale-dependent features of a signal. By discretising manifolds as graphs, the Slepian functions and wavelets of a triangular mesh are presented. Through a wavelet transform, the wavelet coefficients of a field defined on the mesh are found and used in a straightforward thresholding denoising scheme.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.