Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PARFormer: Transformer-based Multi-Task Network for Pedestrian Attribute Recognition (2304.07230v1)

Published 14 Apr 2023 in cs.CV

Abstract: Pedestrian attribute recognition (PAR) has received increasing attention because of its wide application in video surveillance and pedestrian analysis. Extracting robust feature representation is one of the key challenges in this task. The existing methods mainly use the convolutional neural network (CNN) as the backbone network to extract features. However, these methods mainly focus on small discriminative regions while ignoring the global perspective. To overcome these limitations, we propose a pure transformer-based multi-task PAR network named PARFormer, which includes four modules. In the feature extraction module, we build a transformer-based strong baseline for feature extraction, which achieves competitive results on several PAR benchmarks compared with the existing CNN-based baseline methods. In the feature processing module, we propose an effective data augmentation strategy named batch random mask (BRM) block to reinforce the attentive feature learning of random patches. Furthermore, we propose a multi-attribute center loss (MACL) to enhance the inter-attribute discriminability in the feature representations. In the viewpoint perception module, we explore the impact of viewpoints on pedestrian attributes, and propose a multi-view contrastive loss (MCVL) that enables the network to exploit the viewpoint information. In the attribute recognition module, we alleviate the negative-positive imbalance problem to generate the attribute predictions. The above modules interact and jointly learn a highly discriminative feature space, and supervise the generation of the final features. Extensive experimental results show that the proposed PARFormer network performs well compared to the state-of-the-art methods on several public datasets, including PETA, RAP, and PA100K. Code will be released at https://github.com/xwf199/PARFormer.

Citations (17)

Summary

We haven't generated a summary for this paper yet.