Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Continued fractions for cycle-alternating permutations (2304.06545v2)

Published 13 Apr 2023 in math.CO

Abstract: A permutation is said to be cycle-alternating if it has no cycle double rises, cycle double falls or fixed points; thus each index $i$ is either a cycle valley ($\sigma{-1}(i)>i<\sigma(i)$) or a cycle peak ($\sigma{-1}(i)<i>\sigma(i)$). We find Stieltjes-type continued fractions for some multivariate polynomials that enumerate cycle-alternating permutations with respect to a large (sometimes infinite) number of simultaneous statistics that measure cycle status, record status, crossings and nestings along with the parity of the indices. Our continued fractions are specializations of more general continued fractions of Sokal and Zeng. We then introduce alternating Laguerre digraphs, which are generalization of cycle-alternating permutations, and find exponential generating functions for some polynomials enumerating them. We interpret the Stieltjes--Rogers and Jacobi--Rogers matrices associated to some of our continued fractions in terms of alternating Laguerre digraphs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.