Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Adaptive active subspace-based metamodeling for high-dimensional reliability analysis (2304.06252v1)

Published 13 Apr 2023 in stat.AP

Abstract: To address the challenges of reliability analysis in high-dimensional probability spaces, this paper proposes a new metamodeling method that couples active subspace, heteroscedastic Gaussian process, and active learning. The active subspace is leveraged to identify low-dimensional salient features of a high-dimensional computational model. A surrogate computational model is built in the low-dimensional feature space by a heteroscedastic Gaussian process. Active learning adaptively guides the surrogate model training toward the critical region that significantly contributes to the failure probability. A critical trait of the proposed method is that the three main ingredients-active subspace, heteroscedastic Gaussian process, and active learning-are coupled to adaptively optimize the feature space mapping in conjunction with the surrogate modeling. This coupling empowers the proposed method to accurately solve nontrivial high-dimensional reliability problems via low-dimensional surrogate modeling. Finally, numerical examples of a high-dimensional nonlinear function and structural engineering applications are investigated to verify the performance of the proposed method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.