Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning with Classifier Shift for Class Imbalance (2304.04972v1)

Published 11 Apr 2023 in cs.LG

Abstract: Federated learning aims to learn a global model collaboratively while the training data belongs to different clients and is not allowed to be exchanged. However, the statistical heterogeneity challenge on non-IID data, such as class imbalance in classification, will cause client drift and significantly reduce the performance of the global model. This paper proposes a simple and effective approach named FedShift which adds the shift on the classifier output during the local training phase to alleviate the negative impact of class imbalance. We theoretically prove that the classifier shift in FedShift can make the local optimum consistent with the global optimum and ensure the convergence of the algorithm. Moreover, our experiments indicate that FedShift significantly outperforms the other state-of-the-art federated learning approaches on various datasets regarding accuracy and communication efficiency.

Citations (4)

Summary

We haven't generated a summary for this paper yet.