Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Experimental Study of Class Imbalance in Federated Learning (2109.04094v2)

Published 9 Sep 2021 in cs.LG

Abstract: Federated learning is a distributed machine learning paradigm that trains a global model for prediction based on a number of local models at clients while local data privacy is preserved. Class imbalance is believed to be one of the factors that degrades the global model performance. However, there has been very little research on if and how class imbalance can affect the global performance. class imbalance in federated learning is much more complex than that in traditional non-distributed machine learning, due to different class imbalance situations at local clients. Class imbalance needs to be re-defined in distributed learning environments. In this paper, first, we propose two new metrics to define class imbalance -- the global class imbalance degree (MID) and the local difference of class imbalance among clients (WCS). Then, we conduct extensive experiments to analyze the impact of class imbalance on the global performance in various scenarios based on our definition. Our results show that a higher MID and a larger WCS degrade more the performance of the global model. Besides, WCS is shown to slow down the convergence of the global model by misdirecting the optimization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. C. Xiao (11 papers)
  2. S. Wang (544 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.