Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locality-constrained autoregressive cum conditional normalizing flow for lattice field theory simulations (2304.01798v1)

Published 4 Apr 2023 in hep-lat, physics.comp-ph, and stat.ML

Abstract: Normalizing flow-based sampling methods have been successful in tackling computational challenges traditionally associated with simulating lattice quantum field theories. Further works have incorporated gauge and translational invariance of the action integral in the underlying neural networks, which have led to efficient training and inference in those models. In this paper, we incorporate locality of the action integral which leads to simplifications to the input domain of conditional normalizing flows that sample constant time sub-lattices in an autoregressive process, dubbed local-Autoregressive Conditional Normalizing Flow (l-ACNF). We find that the autocorrelation times of l-ACNF models outperform an equivalent normalizing flow model on the full lattice by orders of magnitude when sampling $\phi{4}$ theory on a 2 dimensional lattice.

Summary

We haven't generated a summary for this paper yet.