Applications of flow models to the generation of correlated lattice QCD ensembles (2401.10874v2)
Abstract: Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables. Three different proof-of-concept applications are demonstrated using a novel residual flow architecture: continuum limits of gauge theories, the mass dependence of QCD observables, and hadronic matrix elements based on the Feynman-HeLLMann approach. In all three cases, it is shown that statistical uncertainties are significantly reduced when machine-learned flows are incorporated as compared with the same calculations performed with uncorrelated ensembles or direct reweighting.
- P. Boyle et al. in Snowmass 2021. 3, 2022. arXiv:2204.00039 [hep-lat].
- USQCD Collaboration, A. S. Kronfeld et al. arXiv:2207.07641 [hep-lat].
- D. Boyda et al. in 2022 Snowmass Summer Study. 2, 2022. arXiv:2202.05838 [hep-lat].
- D. J. Rezende and S. Mohamed arXiv:1505.05770 [stat.ML].
- S.-H. Li and L. Wang Phys. Rev. Lett. 121 (Dec, 2018) 260601. https://link.aps.org/doi/10.1103/PhysRevLett.121.260601.
- May, 2021. arXiv:2105.03418 [hep-lat].
- Dec, 2021. arXiv:2112.01586 [cs.LG].
- 12, 2021. arXiv:2112.01582 [hep-lat].
- X.-Y. Jin in 38th International Symposium on Lattice Field Theory. 1, 2022. arXiv:2201.01862 [hep-lat].
- J. Finkenrath arXiv:2201.02216 [hep-lat].
- 10, 2023. arXiv:2310.03381 [hep-lat].
- 8, 2022. arXiv:2208.03832 [hep-lat].
- S. Bacchio arXiv:2305.07932 [hep-lat].
- N. Tantalo PoS LATTICE2022 (2023) 249, arXiv:2301.02097 [hep-lat].
- S. Kullback and R. A. Leibler The Annals of Mathematical Statistics 22 no. 1, (1951) 79 – 86.
- W. K. Hastings Biometrika 57 (1970) 97–109.
- L. Tierney the Annals of Statistics (1994) 1701–1728.
- M. Creutz Phys. Rev. D 21 (1980) 2308–2315.
- N. Cabibbo and E. Marinari Phys. Lett. B 119 (1982) 387–390.
- A. D. Kennedy and B. J. Pendleton Phys. Lett. B 156 (1985) 393–399.
- F. R. Brown and T. J. Woch Phys. Rev. Lett. 58 (1987) 2394.
- S. L. Adler Phys. Rev. D 37 (1988) 458.
- K. U. Can et al. Phys. Rev. D 102 (2020) 114505, arXiv:2007.01523 [hep-lat].
- http://github.com/google/jax.
- http://github.com/deepmind/dm-haiku.
- A. Sergeev and M. Del Balso arXiv:1802.05799 [cs.LG].
- J. D. Hunter Computing in Science & Engineering 9 no. 3, (2007) 90–95.
- M. Lüscher Commun. Math. Phys. 293 (2010) 899–919, arXiv:0907.5491 [hep-lat].