Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Domain Generalization Methods are Strong Baselines for Open Domain Generalization (2303.18031v1)

Published 31 Mar 2023 in cs.CV, cs.AI, and cs.LG

Abstract: In real-world applications, a machine learning model is required to handle an open-set recognition (OSR), where unknown classes appear during the inference, in addition to a domain shift, where the distribution of data differs between the training and inference phases. Domain generalization (DG) aims to handle the domain shift situation where the target domain of the inference phase is inaccessible during model training. Open domain generalization (ODG) takes into account both DG and OSR. Domain-Augmented Meta-Learning (DAML) is a method targeting ODG but has a complicated learning process. On the other hand, although various DG methods have been proposed, they have not been evaluated in ODG situations. This work comprehensively evaluates existing DG methods in ODG and shows that two simple DG methods, CORrelation ALignment (CORAL) and Maximum Mean Discrepancy (MMD), are competitive with DAML in several cases. In addition, we propose simple extensions of CORAL and MMD by introducing the techniques used in DAML, such as ensemble learning and Dirichlet mixup data augmentation. The experimental evaluation demonstrates that the extended CORAL and MMD can perform comparably to DAML with lower computational costs. This suggests that the simple DG methods and their simple extensions are strong baselines for ODG. The code used in the experiments is available at https://github.com/shiralab/OpenDG-Eval.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Masashi Noguchi (1 paper)
  2. Shinichi Shirakawa (25 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.