Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computationally efficient predictive control based on ANN state-space models (2303.17305v2)

Published 30 Mar 2023 in eess.SY and cs.SY

Abstract: Artificial neural networks (ANN) have been shown to be flexible and effective function estimators for identification of nonlinear state-space models. However, if the resulting models are used directly for nonlinear model predictive control (NMPC), the resulting nonlinear optimization problem is often overly complex due the size of the network, requires the use of high-order observers to track the states of the ANN model, and the overall control scheme exploits little of the structural properties or available autograd tools for these models. In this paper, we propose an efficient approach to auto-convert ANN state-space models to linear parameter-varying (LPV) form and solve predictive control problems by successive solutions of linear model predictive problems, corresponding to quadratic programs (QPs). Furthermore, we show how existing ANN identification methods, such as the SUBNET method that uses a state encoder, can provide efficient implementation of MPCs. The performance of the proposed approach is demonstrated via a simulation study on an unbalanced disc system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.