Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Dimensionality Collapse: Optimal Measurement Selection for Low-Error Infinite-Horizon Forecasting (2303.15407v1)

Published 27 Mar 2023 in cs.LG, cs.SY, eess.SP, eess.SY, math.ST, and stat.TH

Abstract: This work introduces a method to select linear functional measurements of a vector-valued time series optimized for forecasting distant time-horizons. By formulating and solving the problem of sequential linear measurement design as an infinite-horizon problem with the time-averaged trace of the Cram\'{e}r-Rao lower bound (CRLB) for forecasting as the cost, the most informative data can be collected irrespective of the eventual forecasting algorithm. By introducing theoretical results regarding measurements under additive noise from natural exponential families, we construct an equivalent problem from which a local dimensionality reduction can be derived. This alternative formulation is based on the future collapse of dimensionality inherent in the limiting behavior of many differential equations and can be directly observed in the low-rank structure of the CRLB for forecasting. Implementations of both an approximate dynamic programming formulation and the proposed alternative are illustrated using an extended Kalman filter for state estimation, with results on simulated systems with limit cycles and chaotic behavior demonstrating a linear improvement in the CRLB as a function of the number of collapsing dimensions of the system.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube