Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 15 tok/s
GPT-5 High 16 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 188 tok/s Pro
2000 character limit reached

Identifiability of causal graphs under nonadditive conditionally parametric causal models (2303.15376v5)

Published 27 Mar 2023 in stat.ME

Abstract: Causal discovery from observational data typically requires strong assumptions about the data-generating process. Previous research has established the identifiability of causal graphs under various models, including linear non-Gaussian, post-nonlinear, and location-scale models. However, these models may have limited applicability in real-world situations that involve a mixture of discrete and continuous variables or where the cause affects the variance or tail behavior of the effect. In this study, we introduce a new class of models, called Conditionally Parametric Causal Models (CPCM), which assume that the distribution of the effect, given the cause, belongs to well-known families such as Gaussian, Poisson, Gamma, or heavy-tailed Pareto distributions. These models are adaptable to a wide range of practical situations where the cause can influence the variance or tail behavior of the effect. We demonstrate the identifiability of CPCM by leveraging the concept of sufficient statistics. Furthermore, we propose an algorithm for estimating the causal structure from random samples drawn from CPCM. We evaluate the empirical properties of our methodology on various datasets, demonstrating state-of-the-art performance across multiple benchmarks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.