Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discovering the Network Granger Causality in Large Vector Autoregressive Models (2303.15158v3)

Published 27 Mar 2023 in stat.ME

Abstract: This paper proposes novel inferential procedures for discovering the network Granger causality in high-dimensional vector autoregressive models. In particular, we mainly offer two multiple testing procedures designed to control the false discovery rate (FDR). The first procedure is based on the limiting normal distribution of the $t$-statistics with the debiased lasso estimator. The second procedure is its bootstrap version. We also provide a robustification of the first procedure against any cross-sectional dependence using asymptotic e-variables. Their theoretical properties, including FDR control and power guarantee, are investigated. The finite sample evidence suggests that both procedures can successfully control the FDR while maintaining high power. Finally, the proposed methods are applied to discovering the network Granger causality in a large number of macroeconomic variables and regional house prices in the UK.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.