Higher-order correlations between different moments of two flow amplitudes in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV (2303.13414v2)
Abstract: The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.
- U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826 [nucl-th].
- P. Braun-Munzinger, V. Koch, T. Schäfer, and J. Stachel, “Properties of hot and dense matter from relativistic heavy ion collisions”, Phys. Rept. 621 (2016) 76–126, arXiv:1510.00442 [nucl-th].
- W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339–376, arXiv:1802.04801 [hep-ph].
- ALICE Collaboration, “The ALICE experiment – A journey through QCD”, arXiv:2211.04384 [nucl-ex].
- J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, Phys. Rev. D 46 (1992) 229–245.
- S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions”, Z. Phys. C 70 (1996) 665–672, arXiv:hep-ph/9407282.
- R. S. Bhalerao, M. Luzum, and J.-Y. Ollitrault, “Determining initial-state fluctuations from flow measurements in heavy-ion collisions”, Phys. Rev. C 84 (2011) 034910, arXiv:1104.4740 [nucl-th].
- N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “A New method for measuring azimuthal distributions in nucleus-nucleus collisions”, Phys. Rev. C 63 (2001) 054906, arXiv:nucl-th/0007063.
- N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Flow analysis from multiparticle azimuthal correlations”, Phys. Rev. C 64 (2001) 054901, arXiv:nucl-th/0105040.
- A. Bilandzic, R. Snellings, and S. Voloshin, “Flow analysis with cumulants: Direct calculations”, Phys. Rev. C 83 (2011) 044913, arXiv:1010.0233 [nucl-ex].
- A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, Phys. Rev. C 89 (2014) 064904, arXiv:1312.3572 [nucl-ex].
- J. E. Parkkila, A. Onnerstad, S. F. Taghavi, C. Mordasini, A. Bilandzic, M. Virta, and D. J. Kim, “New constraints for QCD matter from improved Bayesian parameter estimation in heavy-ion collisions at LHC”, Phys. Lett. B 835 (2022) 137485, arXiv:2111.08145 [hep-ph].
- ALICE Collaboration, J. Adam et al., “Correlated event-by-event fluctuations of flow harmonics in Pb–Pb collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\rm NN}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 117 (2016) 182301, arXiv:1604.07663 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Systematic studies of correlations between different order flow harmonics in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. C 97 (2018) 024906, arXiv:1709.01127 [nucl-ex].
- R. Kubo, “Generalized cumulant expansion method”, Journal of the Physical Society of Japan 17 (1962) 1100–1120.
- A. Bilandzic, M. Lesch, C. Mordasini, and S. F. Taghavi, “Multivariate cumulants in flow analyses: The next generation”, Phys. Rev. C 105 (2022) 024912, arXiv:2101.05619 [physics.data-an].
- ALICE Collaboration, S. Acharya et al., “Measurements of mixed harmonic cumulants in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Lett. B 818 (2021) 136354, arXiv:2102.12180 [nucl-ex].
- C. Mordasini, A. Bilandzic, D. Karakoç, and S. F. Taghavi, “Higher order Symmetric Cumulants”, Phys. Rev. C 102 (2020) 024907, arXiv:1901.06968 [nucl-ex].
- ALICE Collaboration, S. Acharya et al., “Multiharmonic Correlations of Different Flow Amplitudes in Pb–Pb Collisions at sNN=2.76subscript𝑠NN2.76\sqrt{s_{\mathrm{NN}}}=2.76square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 2.76 TeV”, Phys. Rev. Lett. 127 (2021) 092302, arXiv:2101.02579 [nucl-ex].
- J. E. Bernhard, P. W. Marcy, C. E. Coleman-Smith, S. Huzurbazar, R. L. Wolpert, and S. A. Bass, “Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison”, Phys. Rev. C 91 (2015) 054910, arXiv:1502.00339 [nucl-th].
- J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, “Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium”, Phys. Rev. C 94 (2016) 024907, arXiv:1605.03954 [nucl-th].
- J. E. Bernhard, J. S. Moreland, and S. A. Bass, “Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma”, Nature Phys. 15 (2019) 1113–1117.
- J. Auvinen, K. J. Eskola, P. Huovinen, H. Niemi, R. Paatelainen, and P. Petreczky, “Temperature dependence of η/s𝜂𝑠\eta/sitalic_η / italic_s of strongly interacting matter: Effects of the equation of state and the parametric form of (η/s)(T)𝜂𝑠𝑇(\eta/s)(T)( italic_η / italic_s ) ( italic_T )”, Phys. Rev. C 102 (2020) 044911, arXiv:2006.12499 [nucl-th].
- G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, “A transverse momentum differential global analysis of Heavy Ion Collisions”, Phys. Rev. Lett. 126 (2021) 202301, arXiv:2010.15130 [nucl-th].
- G. Nijs, W. van der Schee, U. Gürsoy, and R. Snellings, “Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum”, Phys. Rev. C 103 (2021) 054909, arXiv:2010.15134 [nucl-th].
- JETSCAPE Collaboration, D. Everett et al., “Multisystem Bayesian constraints on the transport coefficients of QCD matter”, Phys. Rev. C 103 (2021) 054904, arXiv:2011.01430 [hep-ph].
- J. E. Parkkila, A. Onnerstad, and D. J. Kim, “Bayesian estimation of the specific shear and bulk viscosity of the quark-gluon plasma with additional flow harmonic observables”, Phys. Rev. C 104 (2021) 054904, arXiv:2106.05019 [hep-ph].
- S. F. Taghavi, “A Fourier-cumulant analysis for multiharmonic flow fluctuation: by employing a multidimensional generating function approach”, Eur. Phys. J. C 81 (2021) 652, arXiv:2005.04742 [nucl-th].
- ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.
- ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].
- ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- ALICE Collaboration, J. Adam et al., “Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at sNNsubscript𝑠NN\sqrt{s_{\rm NN}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, Phys. Rev. Lett. 116 (2016) 222302, arXiv:1512.06104 [nucl-ex].
- Technical design report. ALICE. CERN, Geneva, 1999. http://cds.cern.ch/record/391175.
- ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
- ALICE Collaboration, F. Carnesecchi, “Performance of the ALICE Time-Of-Flight detector at the LHC”, JINST 14 (2019) C06023, arXiv:1806.03825 [physics.ins-det].
- ALICE Collaboration, S. Acharya et al., “Higher harmonic non-linear flow modes of charged hadrons in Pb–Pb collisions at sNNsubscript𝑠NN\sqrt{s_{\mathrm{NN}}}square-root start_ARG italic_s start_POSTSUBSCRIPT roman_NN end_POSTSUBSCRIPT end_ARG = 5.02 TeV”, JHEP 05 (2020) 085, arXiv:2002.00633 [nucl-ex].
- M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions”, Comput. Phys. Commun. 83 (1994) 307, arXiv:nucl-th/9502021.
- R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, and L. Urban, “GEANT: Detector Description and Simulation Tool; Oct 1994”,. http://cds.cern.ch/record/1082634. Long Writeup W5013.
- R. Barlow, “Systematic errors: Facts and fictions”, in Conference on Advanced Statistical Techniques in Particle Physics, pp. 134–144. 7, 2002. arXiv:hep-ex/0207026.
- C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, “The iEBE-VISHNU code package for relativistic heavy-ion collisions”, Comput. Phys. Commun. 199 (2016) 61–85, arXiv:1409.8164 [nucl-th].
- H. Song and U. W. Heinz, “Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions”, Phys. Rev. C 77 (2008) 064901, arXiv:0712.3715 [nucl-th].
- S. A. Bass et al., “Microscopic models for ultrarelativistic heavy ion collisions”, Prog. Part. Nucl. Phys. 41 (1998) 255–369, arXiv:nucl-th/9803035.
- M. Bleicher et al., “Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model”, J. Phys. G 25 (1999) 1859–1896, arXiv:hep-ph/9909407.
- J. S. Moreland, J. E. Bernhard, and S. A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions”, Phys. Rev. C 92 (2015) 011901, arXiv:1412.4708 [nucl-th].
- F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions”, Phys. Rev. C 85 (2012) 024908, arXiv:1111.6538 [nucl-th].
- D. Teaney and L. Yan, “Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics”, Phys. Rev. C 86 (2012) 044908, arXiv:1206.1905 [nucl-th].
- B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, “Triangular flow in hydrodynamics and transport theory”, Phys. Rev. C 82 (2010) 034913, arXiv:1007.5469 [nucl-th].
- H. Niemi, G. S. Denicol, H. Holopainen, and P. Huovinen, “Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 87 (2013) 054901, arXiv:1212.1008 [nucl-th].
- H. Mäntysaari and B. Schenke, “Evidence of strong proton shape fluctuations from incoherent diffraction”, Phys. Rev. Lett. 117 (2016) 052301, arXiv:1603.04349 [hep-ph].
- H. Mäntysaari, B. Schenke, C. Shen, and W. Zhao, “Bayesian inference of the fluctuating proton shape”, Phys. Lett. B 833 137348, arXiv:2202.01998 [hep-ph].
- G. Giacalone, G. Nijs, and W. van der Schee, “Determination of the neutron skin of 208208{}^{208}start_FLOATSUPERSCRIPT 208 end_FLOATSUPERSCRIPTPb from ultrarelativistic nuclear collisions”, Phys. Rev. Lett. 131 (2023) 202302, arXiv:2305.00015 [nucl-th].
- P. Romatschke, “Relativistic Fluid Dynamics Far From Local Equilibrium”, Phys. Rev. Lett. 120 (2018) 012301, arXiv:1704.08699 [hep-th].
- A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting, and D. Teaney, “Matching the Nonequilibrium Initial Stage of Heavy Ion Collisions to Hydrodynamics with QCD Kinetic Theory”, Phys. Rev. Lett. 122 (2019) 122302, arXiv:1805.01604 [hep-ph].
- A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting, and D. Teaney, “Effective kinetic description of event-by-event pre-equilibrium dynamics in high-energy heavy-ion collisions”, Phys. Rev. C 99 (2019) 034910, arXiv:1805.00961 [hep-ph].
- A. Kurkela and A. Mazeliauskas, “Chemical Equilibration in Hadronic Collisions”, Phys. Rev. Lett. 122 (2019) 142301, arXiv:1811.03040 [hep-ph].
- M. Strickland, “The non-equilibrium attractor for kinetic theory in relaxation time approximation”, JHEP 12 (2018) 128, arXiv:1809.01200 [nucl-th].
- S. Kamata, M. Martinez, P. Plaschke, S. Ochsenfeld, and S. Schlichting, “Hydrodynamization and nonequilibrium Green’s functions in kinetic theory”, Phys. Rev. D 102 (2020) 056003, arXiv:2004.06751 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.