Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Laplace-difference equation for integrated correlators of operators with general charges in $\mathcal{N}=4$ SYM (2303.13195v3)

Published 23 Mar 2023 in hep-th

Abstract: We consider the integrated correlators associated with four-point correlation functions $\langle \mathcal{O}_2\mathcal{O}_2\mathcal{O}{(i)}_p \mathcal{O}{(j)}_p \rangle$ in four-dimensional $\mathcal{N}=4$ supersymmetric Yang-Mills theory (SYM) with $SU(N)$ gauge group, where $\mathcal{O}{(i)}_p$ is a superconformal primary with charge (or dimension) $p$ and the superscript $i$ represents possible degeneracy. These integrated correlators are defined by integrating out spacetime dependence with a certain integration measure, and they can be computed via supersymmetric localisation. They are modular functions of complexified Yang-Mills coupling $\tau$. We show that the localisation computation is systematised by appropriately reorganising the operators. After this reorganisation of the operators, we prove that all the integrated correlators for any $N$, with some crucial normalisation factor, satisfy a universal Laplace-difference equation (with the laplacian defined on the $\tau$-plane) that relates integrated correlators of operators with different charges. This Laplace-difference equation is a recursion relation that completely determines all the integrated correlators, once the initial conditions are given.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. D. J. Binder, S. M. Chester, S. S. Pufu, and Y. Wang, “𝒩𝒩\mathcal{N}caligraphic_N = 4 Super-Yang-Mills correlators at strong coupling from string theory and localization,” JHEP 12 (2019) 119, 1902.06263.
  2. S. M. Chester and S. S. Pufu, “Far beyond the planar limit in strongly-coupled 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 01 (2021) 103, 2003.08412.
  3. S. M. Chester, “Genus-2 holographic correlator on AdS×5{}_{5}\timesstart_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT from localization,” JHEP 04 (2020) 193, 1908.05247.
  4. S. M. Chester, M. B. Green, S. S. Pufu, Y. Wang, and C. Wen, “Modular invariance in superstring theory from 𝒩𝒩\mathcal{N}caligraphic_N = 4 super-Yang-Mills,” JHEP 11 (2020) 016, 1912.13365.
  5. S. M. Chester, M. B. Green, S. S. Pufu, Y. Wang, and C. Wen, “New modular invariants in 𝒩𝒩\mathcal{N}caligraphic_N = 4 Super-Yang-Mills theory,” JHEP 04 (2021) 212, 2008.02713.
  6. V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129, 0712.2824.
  7. N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 (2003), no. 5 831–864, hep-th/0206161.
  8. D. Dorigoni, M. B. Green, and C. Wen, “Novel Representation of an Integrated Correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 126 (2021), no. 16 161601, 2102.08305.
  9. D. Dorigoni, M. B. Green, and C. Wen, “Exact properties of an integrated correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SU(N) SYM,” JHEP 05 (2021) 089, 2102.09537.
  10. D. Dorigoni, M. B. Green, and C. Wen, “Exact results for duality-covariant integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM with general classical gauge groups,” SciPost Phys. 13 (2, 2022) 092, 2202.05784.
  11. D. Dorigoni, M. B. Green, and C. Wen, “The SAGEX Review on Scattering Amplitudes, Chapter 10: Modular covariance of type IIB string amplitudes and their 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills duals,” 2203.13021.
  12. H. Paul, E. Perlmutter, and H. Raj, “Integrated Correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM via S⁢L⁢(2,ℤ)𝑆𝐿2ℤSL(2,\mathbb{Z})italic_S italic_L ( 2 , blackboard_Z ) Spectral Theory,” 2209.06639.
  13. C. Rayson, Some aspects of conformal 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 SYM four point function. PhD thesis, Cambridge U., 2008. 1706.04450.
  14. F. Aprile, J. M. Drummond, P. Heslop, H. Paul, F. Sanfilippo, M. Santagata, and A. Stewart, “Single particle operators and their correlators in free 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 11 (2020) 072, 2007.09395.
  15. E. D’Hoker, J. Erdmenger, D. Z. Freedman, and M. Perez-Victoria, “Near extremal correlators and vanishing supergravity couplings in AdS / CFT,” Nucl. Phys. B 589 (2000) 3–37, hep-th/0003218.
  16. B. Fiol and Z. Kong, “The planar limit of integrated 4-point functions,” 2303.09572.
  17. C. Montonen and D. I. Olive, “Magnetic Monopoles as Gauge Particles?,” Phys. Lett. B 72 (1977) 117–120.
  18. E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski, and S. S. Pufu, “Correlation Functions of Coulomb Branch Operators,” JHEP 01 (2017) 103, 1602.05971.
  19. H. Paul, E. Perlmutter, and H. Raj, “Exact Large Charge in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM and Semiclassical String Theory,” 2303.13207.
  20. M. Baggio, J. de Boer, and K. Papadodimas, “A non-renormalization theorem for chiral primary 3-point functions,” JHEP 07 (2012) 137, 1203.1036.
  21. B. Eden, A. C. Petkou, C. Schubert, and E. Sokatchev, “Partial nonrenormalization of the stress tensor four point function in N=4 SYM and AdS / CFT,” Nucl. Phys. B 607 (2001) 191–212, hep-th/0009106.
  22. M. Nirschl and H. Osborn, “Superconformal Ward identities and their solution,” Nucl. Phys. B 711 (2005) 409–479, hep-th/0407060.
  23. F. Fucito, J. F. Morales, and R. Poghossian, “Wilson loops and chiral correlators on squashed spheres,” JHEP 11 (2015) 064, 1507.05426.
  24. J. G. Russo and K. Zarembo, “Massive N=2 Gauge Theories at Large N,” JHEP 11 (2013) 130, 1309.1004.
  25. M. B. Green and C. Wen, “Maximal U(1)Y𝑌{}_{Y}start_FLOATSUBSCRIPT italic_Y end_FLOATSUBSCRIPT-violating n-point correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super-Yang-Mills theory,” JHEP 02 (2021) 042, 2009.01211.
  26. D. Dorigoni, M. B. Green, and C. Wen, “Exact expressions for n𝑛nitalic_n-point maximal U⁢(1)Y𝑈subscript1𝑌U(1)_{Y}italic_U ( 1 ) start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT-violating integrated correlators in S⁢U⁢(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11 (2021) 132, 2109.08086.
  27. D. Dorigoni, M. B. Green, C. Wen, and H. Xie, “Modular-invariant large-N𝑁Nitalic_N completion of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills theory,” 2210.14038.
  28. L. F. Alday, S. M. Chester, and T. Hansen, “Modular invariant holographic correlators for 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM with general gauge group,” JHEP 12 (2021) 159, 2110.13106.
  29. P. Goddard, J. Nuyts, and D. I. Olive, “Gauge Theories and Magnetic Charge,” Nucl. Phys. B 125 (1977) 1–28.
  30. S. Collier and E. Perlmutter, “Harnessing S-duality in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM & supergravity as SL(2, ℤℤ\mathbb{Z}blackboard_Z)-averaged strings,” JHEP 08 (2022) 195, 2201.05093.
  31. A. Brown, C. Wen, and H. Xie, “Generating functions and large-charge expansion of integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills theory,” 2303.17570.
  32. M. Baggio, V. Niarchos, and K. Papadodimas, “tt*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT equations, localization and exact chiral rings in 4d 𝒩𝒩\mathcal{N}caligraphic_N =2 SCFTs,” JHEP 02 (2015) 122, 1409.4212.
  33. M. Baggio, V. Niarchos, and K. Papadodimas, “Exact correlation functions in S⁢U⁢(2)⁢𝒩=2𝑆𝑈2𝒩2SU(2)\mathcal{N}=2italic_S italic_U ( 2 ) caligraphic_N = 2 superconformal QCD,” Phys. Rev. Lett. 113 (2014), no. 25 251601, 1409.4217.
  34. M. Baggio, V. Niarchos, and K. Papadodimas, “On exact correlation functions in SU(N) 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 superconformal QCD,” JHEP 11 (2015) 198, 1508.03077.
  35. M. D’Alessandro and L. Genovese, “A Wide class of four point functions of BPS operators in N=4 SYM at order g**4,” Nucl. Phys. B 732 (2006) 64–88, hep-th/0504061.
  36. D. Chicherin, J. Drummond, P. Heslop, and E. Sokatchev, “All three-loop four-point correlators of half-BPS operators in planar 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 08 (2016) 053, 1512.02926.
  37. B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N=4 SYM,” Nucl. Phys. B 862 (2012) 450–503, 1201.5329.
  38. T. Fleury and R. Pereira, “Non-planar data of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 03 (2020) 003, 1910.09428.
  39. D. Chicherin, A. Georgoudis, V. Gonçalves, and R. Pereira, “All five-loop planar four-point functions of half-BPS operators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11 (2018) 069, 1809.00551.
  40. J. L. Bourjaily, P. Heslop, and V.-V. Tran, “Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps,” JHEP 11 (2016) 125, 1609.00007.
  41. L. Rastelli and X. Zhou, “Mellin amplitudes for A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 118 (2017), no. 9 091602, 1608.06624.
  42. L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying,” JHEP 04 (2018) 014, 1710.05923.
  43. G. Arutyunov, R. Klabbers, and S. Savin, “Four-point functions of 1/2-BPS operators of any weights in the supergravity approximation,” JHEP 09 (2018) 118, 1808.06788.
  44. S. Caron-Huot and A.-K. Trinh, “All tree-level correlators in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity: hidden ten-dimensional conformal symmetry,” JHEP 01 (2019) 196, 1809.09173.
  45. L. F. Alday, A. Bissi, and E. Perlmutter, “Genus-One String Amplitudes from Conformal Field Theory,” JHEP 06 (2019) 010, 1809.10670.
  46. J. Drummond, D. Nandan, H. Paul, and K. Rigatos, “String corrections to AdS amplitudes and the double-trace spectrum of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 12 (2019) 173, 1907.00992.
  47. J. M. Drummond, H. Paul, and M. Santagata, “Bootstrapping string theory on AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” 2004.07282.
  48. T. Abl, P. Heslop, and A. E. Lipstein, “Towards the Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” JHEP 04 (2021) 237, 2012.12091.
  49. F. Aprile, J. M. Drummond, H. Paul, and M. Santagata, “The Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT and level splitting of 10d conformal symmetry,” JHEP 11 (2021) 109, 2012.12092.
  50. L. F. Alday, T. Hansen, and J. A. Silva, “AdS Virasoro-Shapiro from dispersive sum rules,” JHEP 10 (2022) 036, 2204.07542.
  51. V. Gonçalves, C. Meneghelli, R. Pereira, J. Vilas Boas, and X. Zhou, “Kaluza-Klein Five-Point Functions from AdS5×S5subscriptAdS5subscript𝑆5\textrm{AdS}_{5}\times S_{5}AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT Supergravity,” 2302.01896.
  52. L. F. Alday and A. Bissi, “Loop Corrections to Supergravity on A⁢d⁢S5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 119 (2017), no. 17 171601, 1706.02388.
  53. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “Quantum Gravity from Conformal Field Theory,” JHEP 01 (2018) 035, 1706.02822.
  54. L. F. Alday and S. Caron-Huot, “Gravitational S-matrix from CFT dispersion relations,” JHEP 12 (2018) 017, 1711.02031.
  55. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “Loop corrections for Kaluza-Klein AdS amplitudes,” JHEP 05 (2018) 056, 1711.03903.
  56. F. Aprile, J. Drummond, P. Heslop, and H. Paul, “One-loop amplitudes in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity from 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM at strong coupling,” JHEP 03 (2020) 190, 1912.01047.
  57. L. F. Alday and X. Zhou, “Simplicity of AdS Supergravity at One Loop,” JHEP 09 (2020) 008, 1912.02663.
  58. J. Drummond, R. Glew, and H. Paul, “One-loop string corrections for AdS Kaluza-Klein amplitudes,” 2008.01109.
  59. Z. Huang and E. Y. Yuan, “Graviton Scattering in AdS5×S5subscriptAdS5superscriptS5\mathrm{AdS}_{5}\times\mathrm{S}^{5}roman_AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × roman_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT at Two Loops,” 2112.15174.
  60. J. M. Drummond and H. Paul, “Two-loop supergravity on AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT from CFT,” JHEP 08 (2022) 275, 2204.01829.
  61. C. Wen and S.-Q. Zhang, “Integrated correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super Yang-Mills and periods,” JHEP 05 (2022) 126, 2203.01890.
  62. Y. Hatsuda and K. Okuyama, “Large N𝑁Nitalic_N expansion of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” 2208.01891.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.