Laplace-difference equation for integrated correlators of operators with general charges in $\mathcal{N}=4$ SYM (2303.13195v3)
Abstract: We consider the integrated correlators associated with four-point correlation functions $\langle \mathcal{O}_2\mathcal{O}_2\mathcal{O}{(i)}_p \mathcal{O}{(j)}_p \rangle$ in four-dimensional $\mathcal{N}=4$ supersymmetric Yang-Mills theory (SYM) with $SU(N)$ gauge group, where $\mathcal{O}{(i)}_p$ is a superconformal primary with charge (or dimension) $p$ and the superscript $i$ represents possible degeneracy. These integrated correlators are defined by integrating out spacetime dependence with a certain integration measure, and they can be computed via supersymmetric localisation. They are modular functions of complexified Yang-Mills coupling $\tau$. We show that the localisation computation is systematised by appropriately reorganising the operators. After this reorganisation of the operators, we prove that all the integrated correlators for any $N$, with some crucial normalisation factor, satisfy a universal Laplace-difference equation (with the laplacian defined on the $\tau$-plane) that relates integrated correlators of operators with different charges. This Laplace-difference equation is a recursion relation that completely determines all the integrated correlators, once the initial conditions are given.
- D. J. Binder, S. M. Chester, S. S. Pufu, and Y. Wang, “𝒩𝒩\mathcal{N}caligraphic_N = 4 Super-Yang-Mills correlators at strong coupling from string theory and localization,” JHEP 12 (2019) 119, 1902.06263.
- S. M. Chester and S. S. Pufu, “Far beyond the planar limit in strongly-coupled 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 01 (2021) 103, 2003.08412.
- S. M. Chester, “Genus-2 holographic correlator on AdS×5{}_{5}\timesstart_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT from localization,” JHEP 04 (2020) 193, 1908.05247.
- S. M. Chester, M. B. Green, S. S. Pufu, Y. Wang, and C. Wen, “Modular invariance in superstring theory from 𝒩𝒩\mathcal{N}caligraphic_N = 4 super-Yang-Mills,” JHEP 11 (2020) 016, 1912.13365.
- S. M. Chester, M. B. Green, S. S. Pufu, Y. Wang, and C. Wen, “New modular invariants in 𝒩𝒩\mathcal{N}caligraphic_N = 4 Super-Yang-Mills theory,” JHEP 04 (2021) 212, 2008.02713.
- V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129, 0712.2824.
- N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 (2003), no. 5 831–864, hep-th/0206161.
- D. Dorigoni, M. B. Green, and C. Wen, “Novel Representation of an Integrated Correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 126 (2021), no. 16 161601, 2102.08305.
- D. Dorigoni, M. B. Green, and C. Wen, “Exact properties of an integrated correlator in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SU(N) SYM,” JHEP 05 (2021) 089, 2102.09537.
- D. Dorigoni, M. B. Green, and C. Wen, “Exact results for duality-covariant integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM with general classical gauge groups,” SciPost Phys. 13 (2, 2022) 092, 2202.05784.
- D. Dorigoni, M. B. Green, and C. Wen, “The SAGEX Review on Scattering Amplitudes, Chapter 10: Modular covariance of type IIB string amplitudes and their 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills duals,” 2203.13021.
- H. Paul, E. Perlmutter, and H. Raj, “Integrated Correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM via SL(2,ℤ)𝑆𝐿2ℤSL(2,\mathbb{Z})italic_S italic_L ( 2 , blackboard_Z ) Spectral Theory,” 2209.06639.
- C. Rayson, Some aspects of conformal 𝒩=4𝒩4{\cal N}=4caligraphic_N = 4 SYM four point function. PhD thesis, Cambridge U., 2008. 1706.04450.
- F. Aprile, J. M. Drummond, P. Heslop, H. Paul, F. Sanfilippo, M. Santagata, and A. Stewart, “Single particle operators and their correlators in free 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 11 (2020) 072, 2007.09395.
- E. D’Hoker, J. Erdmenger, D. Z. Freedman, and M. Perez-Victoria, “Near extremal correlators and vanishing supergravity couplings in AdS / CFT,” Nucl. Phys. B 589 (2000) 3–37, hep-th/0003218.
- B. Fiol and Z. Kong, “The planar limit of integrated 4-point functions,” 2303.09572.
- C. Montonen and D. I. Olive, “Magnetic Monopoles as Gauge Particles?,” Phys. Lett. B 72 (1977) 117–120.
- E. Gerchkovitz, J. Gomis, N. Ishtiaque, A. Karasik, Z. Komargodski, and S. S. Pufu, “Correlation Functions of Coulomb Branch Operators,” JHEP 01 (2017) 103, 1602.05971.
- H. Paul, E. Perlmutter, and H. Raj, “Exact Large Charge in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM and Semiclassical String Theory,” 2303.13207.
- M. Baggio, J. de Boer, and K. Papadodimas, “A non-renormalization theorem for chiral primary 3-point functions,” JHEP 07 (2012) 137, 1203.1036.
- B. Eden, A. C. Petkou, C. Schubert, and E. Sokatchev, “Partial nonrenormalization of the stress tensor four point function in N=4 SYM and AdS / CFT,” Nucl. Phys. B 607 (2001) 191–212, hep-th/0009106.
- M. Nirschl and H. Osborn, “Superconformal Ward identities and their solution,” Nucl. Phys. B 711 (2005) 409–479, hep-th/0407060.
- F. Fucito, J. F. Morales, and R. Poghossian, “Wilson loops and chiral correlators on squashed spheres,” JHEP 11 (2015) 064, 1507.05426.
- J. G. Russo and K. Zarembo, “Massive N=2 Gauge Theories at Large N,” JHEP 11 (2013) 130, 1309.1004.
- M. B. Green and C. Wen, “Maximal U(1)Y𝑌{}_{Y}start_FLOATSUBSCRIPT italic_Y end_FLOATSUBSCRIPT-violating n-point correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super-Yang-Mills theory,” JHEP 02 (2021) 042, 2009.01211.
- D. Dorigoni, M. B. Green, and C. Wen, “Exact expressions for n𝑛nitalic_n-point maximal U(1)Y𝑈subscript1𝑌U(1)_{Y}italic_U ( 1 ) start_POSTSUBSCRIPT italic_Y end_POSTSUBSCRIPT-violating integrated correlators in SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11 (2021) 132, 2109.08086.
- D. Dorigoni, M. B. Green, C. Wen, and H. Xie, “Modular-invariant large-N𝑁Nitalic_N completion of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills theory,” 2210.14038.
- L. F. Alday, S. M. Chester, and T. Hansen, “Modular invariant holographic correlators for 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM with general gauge group,” JHEP 12 (2021) 159, 2110.13106.
- P. Goddard, J. Nuyts, and D. I. Olive, “Gauge Theories and Magnetic Charge,” Nucl. Phys. B 125 (1977) 1–28.
- S. Collier and E. Perlmutter, “Harnessing S-duality in 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM & supergravity as SL(2, ℤℤ\mathbb{Z}blackboard_Z)-averaged strings,” JHEP 08 (2022) 195, 2201.05093.
- A. Brown, C. Wen, and H. Xie, “Generating functions and large-charge expansion of integrated correlators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 supersymmetric Yang-Mills theory,” 2303.17570.
- M. Baggio, V. Niarchos, and K. Papadodimas, “tt*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT equations, localization and exact chiral rings in 4d 𝒩𝒩\mathcal{N}caligraphic_N =2 SCFTs,” JHEP 02 (2015) 122, 1409.4212.
- M. Baggio, V. Niarchos, and K. Papadodimas, “Exact correlation functions in SU(2)𝒩=2𝑆𝑈2𝒩2SU(2)\mathcal{N}=2italic_S italic_U ( 2 ) caligraphic_N = 2 superconformal QCD,” Phys. Rev. Lett. 113 (2014), no. 25 251601, 1409.4217.
- M. Baggio, V. Niarchos, and K. Papadodimas, “On exact correlation functions in SU(N) 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 superconformal QCD,” JHEP 11 (2015) 198, 1508.03077.
- M. D’Alessandro and L. Genovese, “A Wide class of four point functions of BPS operators in N=4 SYM at order g**4,” Nucl. Phys. B 732 (2006) 64–88, hep-th/0504061.
- D. Chicherin, J. Drummond, P. Heslop, and E. Sokatchev, “All three-loop four-point correlators of half-BPS operators in planar 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 08 (2016) 053, 1512.02926.
- B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, “Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N=4 SYM,” Nucl. Phys. B 862 (2012) 450–503, 1201.5329.
- T. Fleury and R. Pereira, “Non-planar data of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 03 (2020) 003, 1910.09428.
- D. Chicherin, A. Georgoudis, V. Gonçalves, and R. Pereira, “All five-loop planar four-point functions of half-BPS operators in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” JHEP 11 (2018) 069, 1809.00551.
- J. L. Bourjaily, P. Heslop, and V.-V. Tran, “Amplitudes and Correlators to Ten Loops Using Simple, Graphical Bootstraps,” JHEP 11 (2016) 125, 1609.00007.
- L. Rastelli and X. Zhou, “Mellin amplitudes for AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 118 (2017), no. 9 091602, 1608.06624.
- L. Rastelli and X. Zhou, “How to Succeed at Holographic Correlators Without Really Trying,” JHEP 04 (2018) 014, 1710.05923.
- G. Arutyunov, R. Klabbers, and S. Savin, “Four-point functions of 1/2-BPS operators of any weights in the supergravity approximation,” JHEP 09 (2018) 118, 1808.06788.
- S. Caron-Huot and A.-K. Trinh, “All tree-level correlators in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity: hidden ten-dimensional conformal symmetry,” JHEP 01 (2019) 196, 1809.09173.
- L. F. Alday, A. Bissi, and E. Perlmutter, “Genus-One String Amplitudes from Conformal Field Theory,” JHEP 06 (2019) 010, 1809.10670.
- J. Drummond, D. Nandan, H. Paul, and K. Rigatos, “String corrections to AdS amplitudes and the double-trace spectrum of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM,” JHEP 12 (2019) 173, 1907.00992.
- J. M. Drummond, H. Paul, and M. Santagata, “Bootstrapping string theory on AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” 2004.07282.
- T. Abl, P. Heslop, and A. E. Lipstein, “Towards the Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” JHEP 04 (2021) 237, 2012.12091.
- F. Aprile, J. M. Drummond, H. Paul, and M. Santagata, “The Virasoro-Shapiro amplitude in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT and level splitting of 10d conformal symmetry,” JHEP 11 (2021) 109, 2012.12092.
- L. F. Alday, T. Hansen, and J. A. Silva, “AdS Virasoro-Shapiro from dispersive sum rules,” JHEP 10 (2022) 036, 2204.07542.
- V. Gonçalves, C. Meneghelli, R. Pereira, J. Vilas Boas, and X. Zhou, “Kaluza-Klein Five-Point Functions from AdS5×S5subscriptAdS5subscript𝑆5\textrm{AdS}_{5}\times S_{5}AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT Supergravity,” 2302.01896.
- L. F. Alday and A. Bissi, “Loop Corrections to Supergravity on AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Phys. Rev. Lett. 119 (2017), no. 17 171601, 1706.02388.
- F. Aprile, J. Drummond, P. Heslop, and H. Paul, “Quantum Gravity from Conformal Field Theory,” JHEP 01 (2018) 035, 1706.02822.
- L. F. Alday and S. Caron-Huot, “Gravitational S-matrix from CFT dispersion relations,” JHEP 12 (2018) 017, 1711.02031.
- F. Aprile, J. Drummond, P. Heslop, and H. Paul, “Loop corrections for Kaluza-Klein AdS amplitudes,” JHEP 05 (2018) 056, 1711.03903.
- F. Aprile, J. Drummond, P. Heslop, and H. Paul, “One-loop amplitudes in AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT supergravity from 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM at strong coupling,” JHEP 03 (2020) 190, 1912.01047.
- L. F. Alday and X. Zhou, “Simplicity of AdS Supergravity at One Loop,” JHEP 09 (2020) 008, 1912.02663.
- J. Drummond, R. Glew, and H. Paul, “One-loop string corrections for AdS Kaluza-Klein amplitudes,” 2008.01109.
- Z. Huang and E. Y. Yuan, “Graviton Scattering in AdS5×S5subscriptAdS5superscriptS5\mathrm{AdS}_{5}\times\mathrm{S}^{5}roman_AdS start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × roman_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT at Two Loops,” 2112.15174.
- J. M. Drummond and H. Paul, “Two-loop supergravity on AdS×5S5{}_{5}\times S^{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT from CFT,” JHEP 08 (2022) 275, 2204.01829.
- C. Wen and S.-Q. Zhang, “Integrated correlators in 𝒩𝒩\mathcal{N}caligraphic_N = 4 super Yang-Mills and periods,” JHEP 05 (2022) 126, 2203.01890.
- Y. Hatsuda and K. Okuyama, “Large N𝑁Nitalic_N expansion of an integrated correlator in 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 SYM,” 2208.01891.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.