Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GrapeQA: GRaph Augmentation and Pruning to Enhance Question-Answering (2303.12320v2)

Published 22 Mar 2023 in cs.CL

Abstract: Commonsense question-answering (QA) methods combine the power of pre-trained LLMs (LM) with the reasoning provided by Knowledge Graphs (KG). A typical approach collects nodes relevant to the QA pair from a KG to form a Working Graph (WG) followed by reasoning using Graph Neural Networks(GNNs). This faces two major challenges: (i) it is difficult to capture all the information from the QA in the WG, and (ii) the WG contains some irrelevant nodes from the KG. To address these, we propose GrapeQA with two simple improvements on the WG: (i) Prominent Entities for Graph Augmentation identifies relevant text chunks from the QA pair and augments the WG with corresponding latent representations from the LM, and (ii) Context-Aware Node Pruning removes nodes that are less relevant to the QA pair. We evaluate our results on OpenBookQA, CommonsenseQA and MedQA-USMLE and see that GrapeQA shows consistent improvements over its LM + KG predecessor (QA-GNN in particular) and large improvements on OpenBookQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Dhaval Taunk (3 papers)
  2. Lakshya Khanna (1 paper)
  3. Pavan Kandru (2 papers)
  4. Vasudeva Varma (47 papers)
  5. Charu Sharma (19 papers)
  6. Makarand Tapaswi (41 papers)
Citations (15)