Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Effective Multivariate Normality Test via Hessians of Empirical Cumulant Generating Functions (2303.11388v1)

Published 20 Mar 2023 in stat.ME

Abstract: In this article, we propose a new class of consistent tests for $p$-variate normality. These tests are based on the characterization of the standard multivariate normal distribution, that the Hessian of the corresponding cumulant generating function is identical to the $p\times p$ identity matrix and the idea of decomposing the information from the joint distribution into the dependence copula and all marginal distributions. Under the null hypothesis of multivariate normality, our proposed test statistic is independent of the unknown mean vector and covariance matrix so that the distribution-free critical value of the test can be obtained by Monte Carlo simulation. We also derive the asymptotic null distribution of proposed test statistic and establish the consistency of the test against different fixed alternatives. Last but not least, a comprehensive and extensive Monte Carlo study also illustrates that our test is a superb yet computationally convenient competitor to many well-known existing test statistics.

Summary

We haven't generated a summary for this paper yet.