Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing normality in any dimension by Fourier methods in a multivariate Stein equation (2007.02596v1)

Published 6 Jul 2020 in math.ST, stat.ME, and stat.TH

Abstract: We study a novel class of affine invariant and consistent tests for multivariate normality. The tests are based on a characterization of the standard $d$-variate normal distribution by means of the unique solution of an initial value problem connected to a partial differential equation, which is motivated by a multivariate Stein equation. The test criterion is a suitably weighted $L2$-statistic. We derive the limit distribution of the test statistic under the null hypothesis as well as under contiguous and fixed alternatives to normality. A consistent estimator of the limiting variance under fixed alternatives as well as an asymptotic confidence interval of the distance of an underlying alternative with respect to the multivariate normal law is derived. In simulation studies, we show that the tests are strong in comparison with prominent competitors, and that the empirical coverage rate of the asymptotic confidence interval converges to the nominal level. We present a real data example, and we outline topics for further research.

Summary

We haven't generated a summary for this paper yet.