Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Partial Knowledge Base Inference in Biomedical Entity Linking (2303.10330v3)

Published 18 Mar 2023 in cs.CL

Abstract: Biomedical entity linking (EL) consists of named entity recognition (NER) and named entity disambiguation (NED). EL models are trained on corpora labeled by a predefined KB. However, it is a common scenario that only entities within a subset of the KB are precious to stakeholders. We name this scenario partial knowledge base inference: training an EL model with one KB and inferring on the part of it without further training. In this work, we give a detailed definition and evaluation procedures for this practically valuable but significantly understudied scenario and evaluate methods from three representative EL paradigms. We construct partial KB inference benchmarks and witness a catastrophic degradation in EL performance due to dramatically precision drop. Our findings reveal these EL paradigms can not correctly handle unlinkable mentions (NIL), so they are not robust to partial KB inference. We also propose two simple-and-effective redemption methods to combat the NIL issue with little computational overhead. Codes are released at https://github.com/Yuanhy1997/PartialKB-EL.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hongyi Yuan (23 papers)
  2. Keming Lu (35 papers)
  3. Zheng Yuan (117 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.