Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BotShape: A Novel Social Bots Detection Approach via Behavioral Patterns (2303.10214v2)

Published 17 Mar 2023 in cs.SI and cs.AI

Abstract: An essential topic in online social network security is how to accurately detect bot accounts and relieve their harmful impacts (e.g., misinformation, rumor, and spam) on genuine users. Based on a real-world data set, we construct behavioral sequences from raw event logs. After extracting critical characteristics from behavioral time series, we observe differences between bots and genuine users and similar patterns among bot accounts. We present a novel social bot detection system BotShape, to automatically catch behavioral sequences and characteristics as features for classifiers to detect bots. We evaluate the detection performance of our system in ground-truth instances, showing an average accuracy of 98.52% and an average f1-score of 96.65% on various types of classifiers. After comparing it with other research, we conclude that BotShape is a novel approach to profiling an account, which could improve performance for most methods by providing significant behavioral features.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jun Wu (154 papers)
  2. Xuesong Ye (5 papers)
  3. Chengjie Mou (4 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.