Visual Analytics of Multivariate Networks with Representation Learning and Composite Variable Construction (2303.09590v3)
Abstract: Multivariate networks are commonly found in real-world data-driven applications. Uncovering and understanding the relations of interest in multivariate networks is not a trivial task. This paper presents a visual analytics workflow for studying multivariate networks to extract associations between different structural and semantic characteristics of the networks (e.g., what are the combinations of attributes largely relating to the density of a social network?). The workflow consists of a neural-network-based learning phase to classify the data based on the chosen input and output attributes, a dimensionality reduction and optimization phase to produce a simplified set of results for examination, and finally an interpreting phase conducted by the user through an interactive visualization interface. A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret. We demonstrate the capabilities of this workflow with multiple case studies on networks derived from social media usage and also evaluate the workflow with qualitative feedback from experts.
- https://github.com/hylu1994/Network-CV.
- J. Albert. Sabermetrics: The past, the present, and the future. In J. A. Gallian, ed., Mathematics and Sports, p. 3–14. Mathematical Association of America, 2010. doi: 10 . 5948/UPO9781614442004 . 002
- Mining communities and their descriptions on attributed graphs: A survey. Data Min Knowl Disc, 35(3):661–687, 2021. doi: 10 . 1007/s10618-021-00741-z
- Time Curves: Folding time to visualize patterns of temporal evolution in data. IEEE Trans Vis Comput Graph, 22(1):559–568, 2016. doi: 10 . 1109/TVCG . 2015 . 2467851
- A taxonomy and survey of dynamic graph visualization. Comput Graph Forum, 36(1):133–159, 2017. doi: 10 . 1111/cgf . 12791
- D33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT data-driven documents. IEEE Trans Vis Comput Graph, 17(12):2301–2309, 2011. doi: 10 . 1109/TVCG . 2011 . 185
- Uncovering sociological effect heterogeneity using tree-based machine learning. Sociol Methodol, 51(2):189–223, 2021. doi: 10 . 1177/0081175021993503
- M. Cavallo and Ç. Demiralp. A visual interaction framework for dimensionality reduction based data exploration. In Proc. CHI, pp. 1–13, 2018. doi: 10 . 1145/3173574 . 3174209
- Social media and network boundaries among college students: Reconstructing companions, conversations, and contact circles. Taiwanese Sociology, 37:1–46, 2019. Written in Chinese. doi: 10 . 6676/TS . 201906_(37) . 02
- The state of the art in enhancing trust in machine learning models with the use of visualizations. Comput Graph Forum, 39(3):713–756, 2020. doi: 10 . 1111/cgf . 14034
- t-viSNE: Interactive assessment and interpretation of t-SNE projections. IEEE Trans Vis Comput Graph, 26(8):2696–2714, 2020. doi: 10 . 1109/tvcg . 2020 . 2986996
- Calliope-Net: Automatic generation of graph data facts via annotated node-link diagrams. IEEE Trans Vis Comput Graph, 2023 (forthcoming). doi: 10 . 48550/arXiv . 2308 . 06441
- Social capital I: Measurement and associations with economic mobility. Nature, 608:108–121, 2022. doi: 10 . 3386/w30313
- Visualization techniques for categorical analysis of social networks with multiple edge sets. Soc Networks, 37:56–64, 2014. doi: 10 . 1016/j . socnet . 2013 . 12 . 002
- J. P. Cunningham and Z. Ghahramani. Linear dimensionality reduction: Survey, insights, and generalizations. J. Mach. Learn. Res., 16(1):2859–2900, 2015. doi: 10 . 48550/arXiv . 1406 . 0873
- Dimensionality reduction for large-scale neural recordings. Nat Neurosci, 17(11):1500–1509, 2014. doi: 10 . 1038/nn . 3776
- C. P. Dancey and J. Reidy. Statistics without maths for psychology. Pearson London, 2017.
- DimReader: Axis lines that explain non-linear projections. IEEE Trans Vis Comput Graph, 25(1):481–490, 2018. doi: 10 . 1109/tvcg . 2018 . 2865194
- ManyNets: An interface for multiple network analysis and visualization. In Proc. CHI, pp. 213–222, 2010. doi: 10 . 1145/1753326 . 1753358
- A visual analytics system for brain functional connectivity comparison across individuals, groups, and time points. In Proc. PacificVis, pp. 250–259, 2017. doi: 10 . 1109/pacificvis . 2017 . 8031601
- Supporting analysis of dimensionality reduction results with contrastive learning. IEEE Trans Vis Comput Graph, 26(1):45–55, 2020. doi: 10 . 1109/tvcg . 2019 . 2934251
- Interactive dimensionality reduction for comparative analysis. IEEE Trans Vis Comput Graph, 28(1):758–768, 2022. doi: 10 . 1109/tvcg . 2021 . 3114807
- A visual analytics framework for contrastive network analysis. In Proc. VAST, pp. 48–59, 2020. doi: 10 . 1109/vast50239 . 2020 . 00010
- Network comparison with interpretable contrastive network representation learning. J Data Sci Stat Vis, 2(5), 2022. doi: 10 . 52933/jdssv . v2i5 . 56
- M. Gleicher. Explainers: Expert explorations with crafted projections. IEEE Trans Vis Comput Graph, 19(12):2042–2051, 2013. doi: 10 . 1109/tvcg . 2013 . 157
- R. Gove. Gragnostics: Fast, interpretable features for comparing graphs. In Proc. IV, pp. 201–209, 2019. doi: 10 . 1109/iv . 2019 . 00042
- A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proc. KDD, pp. 855–864, 2016. doi: 10 . 1145/2939672 . 2939754
- Regularized linear discriminant analysis and its application in microarrays. Biostat, 8(1):86–100, 2007. doi: 10 . 1093/biostatistics/kxj035
- Inductive representation learning on large graphs. In Proc. NIPS, pp. 1024–1034, 2017. doi: 10 . 48550/arXiv . 1706 . 02216
- Robustness and explainability of artificial intelligence. Technical Report KJ-NA-30040-EN-N (online), Publications Office of the European Union, 2020. doi: doi:10 . 2760/57493
- EgoNav: Exploring networks through egocentric spatializations. In Proc. AVI, pp. 563–570, 2012. doi: 10 . 1145/2254556 . 2254661
- Y. Hu. Efficient, high-quality force-directed graph drawing. Math J, 10(1):37–71, 2005.
- VA + embeddings STAR: A state-of-the-art report on the use of embeddings in visual analytics. Comput Graph Forum, 42(3):539–571, 2023. doi: 10 . 1111/cgf . 14859
- A declarative rendering model for multiclass density maps. IEEE Trans Vis Comput Graph, 25(1):470–480, 2018. doi: 10 . 1109/tvcg . 2018 . 2865141
- Uncovering representative groups in multidimensional projections. Comput Graph Forum, 34(3):281–290, 2015. doi: 10 . 1111/cgf . 12640
- Multivariate Network Visualization, vol. 8380 of Lect Notes Comput Sci. Springer, 2014. doi: 10 . 1007/978-3-319-06793-3
- T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In Proc. ICLR, pp. 1–10, 2017. doi: 10 . 48550/arXiv . 1609 . 02907
- Visual neural decomposition to explain multivariate data sets. IEEE Trans Vis Comput Graph, 27(2):1374–1384, 2020. doi: 10 . 1109/tvcg . 2020 . 3030420
- Clustervision: Visual supervision of unsupervised clustering. IEEE Trans Vis Comput Graph, 24(1):142–151, 2018. doi: 10 . 1109/tvcg . 2017 . 2745085
- What would a graph look like in this layout? A machine learning approach to large graph visualization. IEEE Trans Vis Comput Graph, 24(1):478–488, 2018. doi: 10 . 1109/tvcg . 2017 . 2743858
- From indirect to direct contacts on Facebook: A big-data approach to the making of triadic network closure. Can Rev Sociol, 59(2):207–227, 2022. doi: 10 . 1111/cars . 12375
- S. Lespinats and M. Aupetit. CheckViz: Sanity check and topological clues for linear and non-linear mappings. Comput Graph Forum, 30(1):113–125, 2011. doi: 10 . 1111/j . 1467-8659 . 2010 . 01835 . x
- A visual analytics system for water distribution system optimization. In Proc. VIS, pp. 126–130, 2021. doi: 10 . 1109/vis49827 . 2021 . 9623272
- Winglets: Visualizing association with uncertainty in multi-class scatterplots. IEEE Trans Vis Comput Graph, 26(1):770–779, 2020. doi: 10 . 1109/tvcg . 2019 . 2934811
- S. M. Lundberg. SHAP (SHapley Additive exPlanations). https://github.com/slundberg/shap, 2018. Accessed: 2022-12-28.
- A unified approach to interpreting model predictions. In Proc. NIPS, vol. 30, 2017. doi: 10 . 48550/arXiv . 1705 . 07874
- A further comparison of simplification methods for decision-tree induction. In D. Fisher and H.-J. Lenz, eds., Learning from Data: Artificial Intelligence and Statistics V, pp. 365–374. Springer New York, 1996. doi: 10 . 1007/978-1-4612-2404-4_35
- Multidimensional projections for visual analysis of social networks. J Comput Sci Technol, 27(4):791–810, 2012. doi: 10 . 1007/s11390-012-1265-5
- MVN-Reduce: Dimensionality reduction for the visual analysis of multivariate networks. In Proc. EuroVis, pp. 13–17, 2017. doi: 10 . 2312/eurovisshort . 20171126
- A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in scatter plots. IEEE Trans Vis Comput Graph, 19(9):1526–1538, 2013. doi: 10 . 1109/tvcg . 2013 . 65
- The state of the art in multilayer network visualization. Comput Graph Forum, 38(6):125–149, 2019. doi: 10 . 1111/cgf . 13610
- I. Muse. ColorAide. https://facelessuser.github.io/coloraide/, 2020. Accessed: 2022-12-29.
- Multivariate data explanation by jumping emerging patterns visualization. arXiv:2106.11112, 2021. doi: 10 . 48550/arXiv . 2106 . 11112
- M. Newman. Networks. Oxford University Press, 2018.
- The state of the art in visualizing multivariate networks. Comput Graph Forum, 38(3):807–832, 2019. doi: 10 . 1111/cgf . 13728
- PyTorch: An imperative style, high-performance deep learning library. In Proc. NeurIPS, pp. 8024–8035, 2019. doi: 10 . 48550/arXiv . 1912 . 01703
- Scikit-learn: Machine learning in Python. J Mach Learn Res, 12:2825–2830, 2011. doi: 10 . 48550/arXiv . 1201 . 0490
- T. P. Peixoto. The graph-tool python library. figshare, 2014. http://figshare.com/articles/graph_tool/1164194.
- M. J. Powell. Direct search algorithms for optimization calculations. Acta Numerica, 7:287–336, 1998. doi: 10 . 1017/s0962492900002841
- N. Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics, 23(2):e177–e183, 2007. doi: 10 . 1093/bioinformatics/btq091
- Measuring dependence powerfully and equitably. J Mach Learn Res, 17(1):7406–7468, 2016. doi: 10 . 48550/arXiv . 1505 . 02213
- Deep inductive graph representation learning. IEEE Trans Knowl Data Eng, 32(3):438–452, 2018. doi: 10 . 1109/TKDE . 2018 . 2878247
- A. Sarikaya and M. Gleicher. Scatterplots: Tasks, data, and designs. IEEE Trans Vis Comput Graph, 24(1):402–412, 2018. doi: 10 . 1109/tvcg . 2017 . 2744184
- Interactive visual pattern search on graph data via graph representation learning. IEEE Trans Vis Comput Graph, 28(1):335–345, 2022. doi: 10 . 1109/tvcg . 2021 . 3114857
- Composite variables: When and how. Nurs Res, 62(1):45, 2013. doi: 10 . 1097/nnr . 0b013e3182741948
- The Matplotlib development team. Choosing colormaps in matplotlib. https://matplotlib.org/stable/users/explain/colors/colormaps.html, 2023. Accessed: 2023-09-25.
- Representative factor generation for the interactive visual analysis of high-dimensional data. IEEE Trans Vis Comput Graph, 18(12):2621–2630, 2012. doi: 10 . 1109/tvcg . 2012 . 256
- Reducing snapshots to points: A visual analytics approach to dynamic network exploration. IEEE Trans Vis Comput Graph, 22(1):1–10, 2016. doi: 10 . 1109/TVCG . 2015 . 2468078
- Out of the plane: Flower vs. star glyphs to support high-dimensional exploration in two-dimensional embeddings. IEEE Trans Vis Comput Graph, pp. 1–15, 2022 (early access). doi: 10 . 1109/TVCG . 2022 . 3216919
- SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat Methods, 17:261–272, 2020. doi: 10 . 1038/s41592-020-0772-5
- Visual analysis of graphs with multiple connected components. In Proc. VAST, pp. 155–162, 2009. doi: 10 . 1109/vast . 2009 . 5333893
- Quantifying hierarchy and dynamics in US faculty hiring and retention. Nature, 610(7930):120–127, 2022. doi: 10 . 1038/s41586-022-05222-x
- M. Waskom. seaborn.swarmplot. https://seaborn.pydata.org/generated/seaborn.swarmplot.html, 2016. Accessed: 2022-12-27.
- M. L. Waskom. seaborn: statistical data visualization. J Open Source Softw, 6(60):3021, 2021. doi: 10 . 21105/joss . 03021
- A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, 32(1):4–24, 2021. doi: 10 . 1109/tnnls . 2020 . 2978386
- Do transformers really perform badly for graph representation? In Proc. NeurIPS, vol. 34, pp. 28877–28888, 2021. doi: 10 . 48550/arXiv . 2106 . 05234
- EVNet: An explainable deep network for dimension reduction. IEEE Trans Vis Comput Graph, pp. 1–18, 2022 (early access). doi: 10 . 1109/TVCG . 2022 . 3223399
- Network representation learning: A survey. IEEE Trans Big Data, 6(1):3–28, 2018. doi: 10 . 1109/TBDATA . 2018 . 2850013
- Dimension reconstruction for visual exploration of subspace clusters in high-dimensional data. In Proc. PacificVis, pp. 128–135, 2016. doi: 10 . 1109/pacificvis . 2016 . 7465260
- H. Zou and T. Hastie. Regularization and variable selection via the elastic net. J R Stat Soc Series B Stat Methodol, 67(2):301–320, 2005. doi: 10 . 1111/j . 1467-9868 . 2005 . 00503 . x
- Sparse principal component analysis. J Comput Graph Stat, 15(2):265–286, 2006. doi: 10 . 1198/106186006X113430
- Contrastive learning using spectral methods. Proc. NIPS, 26, 2013.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.