Novel exact ultra-compact and ultra-sparse hairy black holes emanating from regular and phantom scalar fields (2303.09116v2)
Abstract: In the framework of a simple gravitational theory that contains a scalar field minimally coupled to gravity, we investigate the emergence of analytic black-hole solutions with non-trivial scalar hair of secondary type. Although it is possible for one to obtain asymptotically (A)dS solutions using our setup, in the context of the present work, we are solely interested in asymptotically flat solutions. At first, we study the properties of static and spherically symmetric black-hole solutions emanating from both regular and phantom scalar fields. We find that the regular-scalar-field-induced solutions are solutions describing ultra-compact black holes, while the phantom scalar fields generate ultra-sparse black-hole solutions. The latter are black holes that can be potentially of very low density since, contrary to ultra-compact ones, their horizon radius is always greater than the horizon radius of the corresponding Schwarzschild black hole of the same mass. Then, we generalize the above static solutions to slowly rotating ones and compute their angular velocities explicitly. Finally, the study of the axial perturbations of the derived solutions takes place, in which we show that there is always a region in the parameter space of the free parameters of our theory that allows the existence of both ultra-compact and ultra-sparse black holes.
- ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716 (2012) 1–29, arXiv:1207.7214 [hep-ex].
- CMS Collaboration, S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC,” Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].
- J. D. Bekenstein, “Transcendence of the law of baryon-number conservation in black hole physics,” Phys. Rev. Lett. 28 (1972) 452–455.
- C. Teitelboim, “Nonmeasurability of the lepton number of a black hole,” Lett. Nuovo Cim. 3S2 (1972) 397–400. [Lett. Nuovo Cim.3,397(1972)].
- J. D. Bekenstein, “Novel “no-scalar-hair” theorem for black holes,” Phys. Rev. D51 no. 12, (1995) R6608.
- T. Torii and K.-i. Maeda, “Black holes with nonAbelian hair and their thermodynamical properties,” Phys. Rev. D 48 (1993) 1643–1651.
- O. Bechmann and O. Lechtenfeld, “Exact black hole solution with selfinteracting scalar field,” Class. Quant. Grav. 12 (1995) 1473–1482, arXiv:gr-qc/9502011.
- H. Dennhardt and O. Lechtenfeld, “Scalar deformations of Schwarzschild holes and their stability,” Int. J. Mod. Phys. A 13 (1998) 741–764, arXiv:gr-qc/9612062.
- U. Nucamendi and M. Salgado, “Scalar hairy black holes and solitons in asymptotically flat space-times,” Phys. Rev. D 68 (2003) 044026, arXiv:gr-qc/0301062.
- S. S. Gubser, “Phase transitions near black hole horizons,” Class. Quant. Grav. 22 (2005) 5121–5144, arXiv:hep-th/0505189.
- K. Bronnikov and J. Fabris, “Regular phantom black holes,” Phys. Rev. Lett. 96 (2006) 251101, arXiv:gr-qc/0511109.
- V. V. Nikonov, J. V. Tchemarina, and A. N. Tsirulev, “A two-parameter family of exact asymptotically flat solutions to the einstein-scalar field equations,” Classical and Quantum Gravity 25 no. 13, (Jun, 2008) 138001.
- A. Anabalon and J. Oliva, “Exact Hairy Black Holes and their Modification to the Universal Law of Gravitation,” Phys. Rev. D 86 (2012) 107501, arXiv:1205.6012 [gr-qc].
- A. Anabalon, D. Astefanesei, and R. Mann, “Exact asymptotically flat charged hairy black holes with a dilaton potential,” JHEP 10 (2013) 184, arXiv:1308.1693 [hep-th].
- B. Kleihaus, J. Kunz, E. Radu, and B. Subagyo, “Axially symmetric static scalar solitons and black holes with scalar hair,” Phys. Lett. B 725 (2013) 489–494, arXiv:1306.4616 [gr-qc].
- E. Babichev and C. Charmousis, “Dressing a black hole with a time-dependent Galileon,” JHEP 08 (2014) 106, arXiv:1312.3204 [gr-qc].
- T. P. Sotiriou and S.-Y. Zhou, “Black hole hair in generalized scalar-tensor gravity: An explicit example,” Phys. Rev. D 90 (2014) 124063, arXiv:1408.1698 [gr-qc].
- C. A. R. Herdeiro and E. Radu, “Kerr black holes with scalar hair,” Phys. Rev. Lett. 112 (2014) 221101, arXiv:1403.2757 [gr-qc].
- C. Charmousis, T. Kolyvaris, E. Papantonopoulos, and M. Tsoukalas, “Black Holes in Bi-scalar Extensions of Horndeski Theories,” JHEP 07 (2014) 085, arXiv:1404.1024 [gr-qc].
- M. Astorino, “Stationary axisymmetric spacetimes with a conformally coupled scalar field,” Phys. Rev. D 91 (2015) 064066, arXiv:1412.3539 [gr-qc].
- M. Cadoni and E. Franzin, “Asymptotically flat black holes sourced by a massless scalar field,” Phys. Rev. D 91 no. 10, (2015) 104011, arXiv:1503.04734 [gr-qc].
- C. Herdeiro and E. Radu, “Construction and physical properties of Kerr black holes with scalar hair,” Class. Quant. Grav. 32 no. 14, (2015) 144001, arXiv:1501.04319 [gr-qc].
- B. Kleihaus, J. Kunz, and S. Yazadjiev, “Scalarized Hairy Black Holes,” Phys. Lett. B 744 (2015) 406–412, arXiv:1503.01672 [gr-qc].
- P. Kanti, A. Bakopoulos, and N. Pappas, “Scalar-Gauss-Bonnet Theories: Evasion of No-Hair Theorems and novel black-hole solutions,” PoS CORFU2018 (2019) 091.
- A. Bakopoulos, G. Antoniou, and K. Panagiota, “Novel black hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories,” AIP Conf. Proc. 2075 no. 1, (2019) 040003.
- T. Tahamtan and O. Svitek, “Robinson-Trautman solution with scalar hair,” Phys. Rev. D 91 no. 10, (2015) 104032, arXiv:1503.09080 [gr-qc].
- A. J. Tolley, D.-J. Wu, and S.-Y. Zhou, “Hairy black holes in scalar extended massive gravity,” Phys. Rev. D 92 no. 12, (2015) 124063, arXiv:1510.05208 [hep-th].
- S. Hod, “Extremal Kerr–Newman black holes with extremely short charged scalar hair,” Phys. Lett. B 751 (2015) 177–183, arXiv:1707.06246 [gr-qc].
- C. Herdeiro, E. Radu, and H. Rúnarsson, “Kerr black holes with Proca hair,” Class. Quant. Grav. 33 no. 15, (2016) 154001, arXiv:1603.02687 [gr-qc].
- Y. Ni, M. Zhou, A. Cardenas-Avendano, C. Bambi, C. A. R. Herdeiro, and E. Radu, “Iron Kα𝛼\alphaitalic_α line of Kerr black holes with scalar hair,” JCAP 07 (2016) 049, arXiv:1606.04654 [gr-qc].
- R. Benkel, T. P. Sotiriou, and H. Witek, “Black hole hair formation in shift-symmetric generalised scalar-tensor gravity,” Class. Quant. Grav. 34 no. 6, (2017) 064001, arXiv:1610.09168 [gr-qc].
- N. Sanchis-Gual, J. C. Degollado, C. Herdeiro, J. A. Font, and P. J. Montero, “Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity,” Phys. Rev. D 94 no. 4, (2016) 044061, arXiv:1607.06304 [gr-qc].
- L. Heisenberg, R. Kase, M. Minamitsuji, and S. Tsujikawa, “Hairy black-hole solutions in generalized Proca theories,” Phys. Rev. D 96 no. 8, (2017) 084049, arXiv:1705.09662 [gr-qc].
- G. Antoniou, A. Bakopoulos, and P. Kanti, “Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories,” Phys. Rev. Lett. 120 no. 13, (2018) 131102, arXiv:1711.03390 [hep-th].
- D. D. Doneva and S. S. Yazadjiev, “New Gauss-Bonnet Black Holes with Curvature-Induced Scalarization in Extended Scalar-Tensor Theories,” Phys. Rev. Lett. 120 no. 13, (2018) 131103, arXiv:1711.01187 [gr-qc].
- H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, “Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling,” Phys. Rev. Lett. 120 no. 13, (2018) 131104, arXiv:1711.02080 [gr-qc].
- G. Antoniou, A. Bakopoulos, and P. Kanti, “Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories,” Phys. Rev. D 97 no. 8, (2018) 084037, arXiv:1711.07431 [hep-th].
- C. A. R. Herdeiro and E. Radu, “Spinning boson stars and hairy black holes with nonminimal coupling,” Int. J. Mod. Phys. D 27 no. 11, (2018) 1843009, arXiv:1803.08149 [gr-qc].
- C. Pacilio, “Scalar charge of black holes in Einstein-Maxwell-dilaton theory,” Phys. Rev. D 98 no. 6, (2018) 064055, arXiv:1806.10238 [gr-qc].
- Y. Brihaye, T. Delplace, C. Herdeiro, and E. Radu, “An analytic effective model for hairy black holes,” Phys. Lett. B 782 (2018) 124–130, arXiv:1803.09089 [gr-qc].
- Y. Brihaye and L. Ducobu, “Hairy black holes, boson stars and non-minimal coupling to curvature invariants,” Phys. Lett. B 795 (2019) 135–143, arXiv:1812.07438 [gr-qc].
- Y.-Q. Wang, Y.-X. Liu, and S.-W. Wei, “Excited Kerr black holes with scalar hair,” Phys. Rev. D 99 no. 6, (2019) 064036, arXiv:1811.08795 [gr-qc].
- C. Herdeiro, I. Perapechka, E. Radu, and Y. Shnir, “Skyrmions around Kerr black holes and spinning BHs with Skyrme hair,” JHEP 10 (2018) 119, arXiv:1808.05388 [gr-qc].
- D. Astefanesei, D. Choque, F. Gómez, and R. Rojas, “Thermodynamically stable asymptotically flat hairy black holes with a dilaton potential,” JHEP 03 (2019) 205, arXiv:1901.01269 [hep-th].
- K. Van Aelst, E. Gourgoulhon, P. Grandclément, and C. Charmousis, “Hairy rotating black holes in cubic Galileon theory,” Class. Quant. Grav. 37 no. 3, (2020) 035007, arXiv:1910.08451 [gr-qc].
- S. Hod, “Spontaneous scalarization of Gauss-Bonnet black holes: Analytic treatment in the linearized regime,” Phys. Rev. D 100 no. 6, (2019) 064039, arXiv:1912.07630 [gr-qc].
- J. Kunz, I. Perapechka, and Y. Shnir, “Kerr black holes with synchronised scalar hair and boson stars in the Einstein-Friedberg-Lee-Sirlin model,” JHEP 07 (2019) 109, arXiv:1904.13379 [gr-qc].
- P. V. P. Cunha, C. A. R. Herdeiro, and E. Radu, “Spontaneously Scalarized Kerr Black Holes in Extended Scalar-Tensor–Gauss-Bonnet Gravity,” Phys. Rev. Lett. 123 no. 1, (2019) 011101, arXiv:1904.09997 [gr-qc].
- F. Filippini and G. Tasinato, “On long range axion hairs for black holes,” Class. Quant. Grav. 36 no. 21, (2019) 215015, arXiv:1903.02950 [gr-qc].
- D.-C. Zou and Y. S. Myung, “Scalar hairy black holes in Einstein-Maxwell-conformally coupled scalar theory,” Phys. Lett. B 803 (2020) 135332, arXiv:1911.08062 [gr-qc].
- P. G. S. Fernandes, “Einstein–Maxwell-scalar black holes with massive and self-interacting scalar hair,” Phys. Dark Univ. 30 (2020) 100716, arXiv:2003.01045 [gr-qc].
- N. M. Santos, C. L. Benone, L. C. B. Crispino, C. A. R. Herdeiro, and E. Radu, “Black holes with synchronised Proca hair: linear clouds and fundamental non-linear solutions,” JHEP 07 (2020) 010, arXiv:2004.09536 [gr-qc].
- J. Sultana, “Hairy black holes in Einstein-Weyl gravity,” Phys. Rev. D 101 no. 8, (2020) 084027.
- J.-P. Hong, M. Suzuki, and M. Yamada, “Spherically Symmetric Scalar Hair for Charged Black Holes,” Phys. Rev. Lett. 125 no. 11, (2020) 111104, arXiv:2004.03148 [gr-qc].
- D. Astefanesei, J. Luis Blázquez-Salcedo, F. Gómez, and R. Rojas, “Thermodynamically stable asymptotically flat hairy black holes with a dilaton potential: the general case,” JHEP 02 (2021) 233, arXiv:2009.01854 [hep-th].
- Y. Shnir, “Black holes with Skyrmion-anti-Skyrmion hairs,” Phys. Lett. B 810 (2020) 135847, arXiv:2008.09452 [hep-th].
- S. Hod, “Onset of spontaneous scalarization in spinning Gauss-Bonnet black holes,” Phys. Rev. D 102 no. 8, (2020) 084060, arXiv:2006.09399 [gr-qc].
- J. Ovalle, R. Casadio, E. Contreras, and A. Sotomayor, “Hairy black holes by gravitational decoupling,” Phys. Dark Univ. 31 (2021) 100744, arXiv:2006.06735 [gr-qc].
- J. F. M. Delgado, C. A. R. Herdeiro, and E. Radu, “Kerr black holes with synchronized axionic hair,” Phys. Rev. D 103 no. 10, (2021) 104029, arXiv:2012.03952 [gr-qc].
- Y. S. Myung and D.-C. Zou, “Scalarized black holes in the Einstein-Maxwell-scalar theory with a quasitopological term,” Phys. Rev. D 103 no. 2, (2021) 024010, arXiv:2011.09665 [gr-qc].
- Y. Brihaye and Y. Verbin, “Scalarized dyonic black holes in vector-tensor Horndeski gravity,” arXiv:2105.11402 [gr-qc].
- V. Faraoni, A. Giusti, and B. H. Fahim, “Spherical inhomogeneous solutions of Einstein and scalar-tensor gravity: a map of the land,” arXiv:2101.00266 [gr-qc].
- A. Bakopoulos, C. Charmousis, P. Kanti, and N. Lecoeur, “Compact objects of spherical symmetry in beyond Horndeski theories,” arXiv:2203.14595 [gr-qc].
- T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Black holes of (2+1)-dimensional f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity coupled to a scalar field,” Phys. Rev. D 103 no. 6, (2021) 064063, arXiv:2101.06410 [gr-qc].
- T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Exact black hole solutions with a conformally coupled scalar field and dynamic Ricci curvature in f(R) gravity theories,” Eur. Phys. J. C 81 no. 10, (2021) 897, arXiv:2103.14141 [gr-qc].
- T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “(2+1)-dimensional black holes in f(R,ϕitalic-ϕ\phiitalic_ϕ) gravity,” Phys. Rev. D 105 no. 4, (2022) 044038, arXiv:2201.00035 [gr-qc].
- T. Karakasis, E. Papantonopoulos, Z.-Y. Tang, and B. Wang, “Rotating (2+1)-dimensional black holes in Einstein-Maxwell-dilaton theory,” Phys. Rev. D 107 no. 2, (2023) 024043, arXiv:2210.15704 [gr-qc].
- T. Karakasis, G. Koutsoumbas, A. Machattou, and E. Papantonopoulos, “Magnetically charged Euler-Heisenberg black holes with scalar hair,” Phys. Rev. D 106 no. 10, (2022) 104006, arXiv:2207.13146 [gr-qc].
- D. P. Theodosopoulos, T. Karakasis, G. Koutsoumbas, and E. Papantonopoulos, “Motion of particles in a magnetically charged Euler-Heisenberg black hole with scalar hair,” arXiv:2303.04196 [gr-qc].
- N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E. Papantonopoulos, “Axion induced angular momentum reversal in Kerr-like black holes,” Phys. Rev. D 106 no. 8, (2022) 084002, arXiv:2206.11734 [gr-qc].
- E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Selecting Horndeski theories without apparent symmetries and their black hole solutions,” arXiv:2303.04126 [gr-qc].
- P. G. S. Fernandes, “Gravity with a generalized conformal scalar field: theory and solutions,” Phys. Rev. D 103 no. 10, (2021) 104065, arXiv:2105.04687 [gr-qc].
- C. Martinez, R. Troncoso, and J. Zanelli, “Exact black hole solution with a minimally coupled scalar field,” Phys. Rev. D 70 (2004) 084035, arXiv:hep-th/0406111.
- C. Martinez and R. Troncoso, “Electrically charged black hole with scalar hair,” Phys. Rev. D 74 (2006) 064007, arXiv:hep-th/0606130.
- A. Anabalon, “Exact Black Holes and Universality in the Backreaction of non-linear Sigma Models with a potential in (A)dS4,” JHEP 06 (2012) 127, arXiv:1204.2720 [hep-th].
- C. Charmousis and D. Iosifidis, “Self tuning scalar tensor black holes,” J. Phys. Conf. Ser. 600 (2015) 012003, arXiv:1501.05167 [gr-qc].
- E. Babichev, C. Charmousis, and M. Hassaine, “Charged Galileon black holes,” JCAP 05 (2015) 031, arXiv:1503.02545 [gr-qc].
- Z.-Y. Fan and H. Lu, “Charged Black Holes with Scalar Hair,” JHEP 09 (2015) 060, arXiv:1507.04369 [hep-th].
- I. Perapechka and Y. Shnir, “Generalized Skyrmions and hairy black holes in asymptotically AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT spacetime,” Phys. Rev. D 95 no. 2, (2017) 025024, arXiv:1612.01914 [hep-th].
- A. Bakopoulos, G. Antoniou, and P. Kanti, “Novel Black-Hole Solutions in Einstein-Scalar-Gauss-Bonnet Theories with a Cosmological Constant,” Phys. Rev. D 99 no. 6, (2019) 064003, arXiv:1812.06941 [hep-th].
- J. Ben Achour and H. Liu, “Hairy Schwarzschild-(A)dS black hole solutions in degenerate higher order scalar-tensor theories beyond shift symmetry,” Phys. Rev. D 99 no. 6, (2019) 064042, arXiv:1811.05369 [gr-qc].
- Y. Brihaye, C. Herdeiro, and E. Radu, “Black Hole Spontaneous Scalarisation with a Positive Cosmological Constant,” Phys. Lett. B 802 (2020) 135269, arXiv:1910.05286 [gr-qc].
- G. Guo, P. Wang, H. Wu, and H. Yang, “Scalarized Einstein-Maxwell-scalar Black Holes in Anti-de Sitter Spacetime,” arXiv:2102.04015 [gr-qc].
- E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Conformally coupled scalar in Lovelock theory,” arXiv:2302.02920 [gr-qc].
- S. Bahamonde, D. D. Doneva, L. Ducobu, C. Pfeifer, and S. S. Yazadjiev, “Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity,” arXiv:2212.07653 [gr-qc].
- K. V. Staykov and D. D. Doneva, “Multiscalar Gauss-Bonnet gravity: Scalarized black holes beyond spontaneous scalarization,” Phys. Rev. D 106 no. 10, (2022) 104064, arXiv:2209.01038 [gr-qc].
- D. D. Doneva, L. G. Collodel, C. J. Krüger, and S. S. Yazadjiev, “Black hole scalarization induced by the spin: 2+1 time evolution,” Phys. Rev. D 102 no. 10, (2020) 104027, arXiv:2008.07391 [gr-qc].
- D. D. Doneva and S. S. Yazadjiev, “Spontaneously scalarized black holes in dynamical Chern-Simons gravity: dynamics and equilibrium solutions,” Phys. Rev. D 103 no. 8, (2021) 083007, arXiv:2102.03940 [gr-qc].
- D. D. Doneva and S. S. Yazadjiev, “Dynamics of the nonrotating and rotating black hole scalarization,” Phys. Rev. D 103 no. 6, (2021) 064024, arXiv:2101.03514 [gr-qc].
- D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou, and S. S. Yazadjiev, “Scalarization,” arXiv:2211.01766 [gr-qc].
- D. D. Doneva, L. G. Collodel, and S. S. Yazadjiev, “Spontaneous nonlinear scalarization of Kerr black holes,” Phys. Rev. D 106 no. 10, (2022) 104027, arXiv:2208.02077 [gr-qc].
- G. Antoniou, C. F. B. Macedo, R. McManus, and T. P. Sotiriou, “Stable spontaneously-scalarized black holes in generalized scalar-tensor theories,” Phys. Rev. D 106 no. 2, (2022) 024029, arXiv:2204.01684 [gr-qc].
- G. Antoniou, L. Bordin, and T. P. Sotiriou, “Compact object scalarization with general relativity as a cosmic attractor,” Phys. Rev. D 103 no. 2, (2021) 024012, arXiv:2004.14985 [gr-qc].
- C. A. R. Herdeiro, E. Radu, H. O. Silva, T. P. Sotiriou, and N. Yunes, “Spin-induced scalarized black holes,” Phys. Rev. Lett. 126 no. 1, (2021) 011103, arXiv:2009.03904 [gr-qc].
- A. Dima, E. Barausse, N. Franchini, and T. P. Sotiriou, “Spin-induced black hole spontaneous scalarization,” Phys. Rev. Lett. 125 no. 23, (2020) 231101, arXiv:2006.03095 [gr-qc].
- G. Ventagli, A. Lehébel, and T. P. Sotiriou, “Onset of spontaneous scalarization in generalized scalar-tensor theories,” Phys. Rev. D 102 no. 2, (2020) 024050, arXiv:2006.01153 [gr-qc].
- N. Andreou, N. Franchini, G. Ventagli, and T. P. Sotiriou, “Spontaneous scalarization in generalised scalar-tensor theory,” Phys. Rev. D 99 no. 12, (2019) 124022, arXiv:1904.06365 [gr-qc]. [Erratum: Phys.Rev.D 101, 109903 (2020)].
- C. F. B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H. O. Silva, and T. P. Sotiriou, “Self-interactions and Spontaneous Black Hole Scalarization,” Phys. Rev. D 99 no. 10, (2019) 104041, arXiv:1903.06784 [gr-qc].
- Z.-Y. Tang, B. Wang, T. Karakasis, and E. Papantonopoulos, “Curvature scalarization of black holes in f(R) gravity,” Phys. Rev. D 104 no. 6, (2021) 064017, arXiv:2008.13318 [gr-qc].
- O. J. C. Dias, R. Monteiro, H. S. Reall, and J. E. Santos, “A Scalar field condensation instability of rotating anti-de Sitter black holes,” JHEP 11 (2010) 036, arXiv:1007.3745 [hep-th].
- D.-C. Zou and Y. S. Myung, “Radial perturbations of the scalarized black holes in Einstein-Maxwell-conformally coupled scalar theory,” Phys. Rev. D 102 no. 6, (2020) 064011, arXiv:2005.06677 [gr-qc].
- G. Guo, P. Wang, H. Wu, and H. Yang, “Thermodynamics and phase structure of an Einstein-Maxwell-scalar model in extended phase space,” Phys. Rev. D 105 no. 6, (2022) 064069, arXiv:2107.04467 [gr-qc].
- M. S. Morris and K. S. Thorne, “Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56 (1988) 395–412.
- J. A. Wheeler, “Geons,” Phys. Rev. 97 (1955) 511–536.
- C. W. Misner and J. A. Wheeler, “Classical physics as geometry: Gravitation, electromagnetism, unquantized charge, and mass as properties of curved empty space,” Annals Phys. 2 (1957) 525–603.
- P. Kanti, B. Kleihaus, and J. Kunz, “Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory,” Phys. Rev. Lett. 107 (2011) 271101, arXiv:1108.3003 [gr-qc].
- P. Kanti, B. Kleihaus, and J. Kunz, “Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory,” Phys. Rev. D 85 (2012) 044007, arXiv:1111.4049 [hep-th].
- G. Antoniou, A. Bakopoulos, P. Kanti, B. Kleihaus, and J. Kunz, “Novel Einstein–scalar-Gauss-Bonnet wormholes without exotic matter,” Phys. Rev. D 101 no. 2, (2020) 024033, arXiv:1904.13091 [hep-th].
- N. Chatzifotis, P. Dorlis, N. E. Mavromatos, and E. Papantonopoulos, “Scalarization of Chern-Simons-Kerr black hole solutions and wormholes,” Phys. Rev. D 105 no. 8, (2022) 084051, arXiv:2202.03496 [gr-qc].
- N. Chatzifotis, E. Papantonopoulos, and C. Vlachos, “Disformal transition of a black hole to a wormhole in scalar-tensor Horndeski theory,” Phys. Rev. D 105 no. 6, (2022) 064025, arXiv:2111.08773 [gr-qc].
- E. Babichev, C. Charmousis, M. Hassaine, and N. Lecoeur, “Conformally coupled theories and their deformed compact objects: From black holes, radiating spacetimes to eternal wormholes,” Phys. Rev. D 106 no. 6, (2022) 064039, arXiv:2206.11013 [gr-qc].
- A. Bakopoulos, C. Charmousis, and N. Lecoeur, “Compact objects in gravity theories,” in 33rd Rencontres de Blois: Exploring the Dark Universe. 9, 2022. arXiv:2209.09499 [gr-qc].
- A. Bakopoulos, C. Charmousis, and P. Kanti, “Traversable wormholes in beyond Horndeski theories,” JCAP 05 no. 05, (2022) 022, arXiv:2111.09857 [gr-qc].
- I. Z. Fisher, “Scalar mesostatic field with regard for gravitational effects,” Zh. Eksp. Teor. Fiz. 18 (1948) 636–640, arXiv:gr-qc/9911008.
- A. I. Janis, E. T. Newman, and J. Winicour, “Reality of the Schwarzschild Singularity,” Phys. Rev. Lett. 20 (1968) 878–880.
- M. Wyman, “Static Spherically Symmetric Scalar Fields in General Relativity,” Phys. Rev. D 24 (1981) 839–841.
- A. G. Agnese and M. La Camera, “GRAVITATION WITHOUT BLACK HOLES,” Phys. Rev. D 31 (1985) 1280–1286.
- M. D. Roberts, “Scalar Field Counterexamples to the Cosmic Censorship Hypothesis,” Gen. Rel. Grav. 21 (1989) 907–939.
- B. Kleihaus, J. Kunz, and P. Kanti, “Particle-like ultracompact objects in Einstein-scalar-Gauss-Bonnet theories,” Phys. Lett. B 804 (2020) 135401, arXiv:1910.02121 [gr-qc].
- C. A. R. Herdeiro, J. a. M. S. Oliveira, and E. Radu, “A class of solitons in Maxwell-scalar and Einstein–Maxwell-scalar models,” Eur. Phys. J. C 80 no. 1, (2020) 23, arXiv:1910.11021 [gr-qc].
- B. Kleihaus, J. Kunz, and P. Kanti, “Properties of ultracompact particlelike solutions in Einstein-scalar-Gauss-Bonnet theories,” Phys. Rev. D 102 no. 2, (2020) 024070, arXiv:2005.07650 [gr-qc].
- O. Baake, C. Charmousis, M. Hassaine, and M. San Juan, “Regular black holes and gravitational particle-like solutions in generic DHOST theories,” JCAP 06 (2021) 021, arXiv:2104.08221 [hep-th].
- N. Chatzifotis, N. Chatzifotis, N. E. Mavromatos, and D. P. Theodosopoulos, “Global Monopoles in the Extended Gauss-Bonnet Gravity,” arXiv:2212.09467 [gr-qc].
- A. Bakopoulos, P. Kanti, and N. Pappas, “Large and ultracompact Gauss-Bonnet black holes with a self-interacting scalar field,” Phys. Rev. D 101 no. 8, (2020) 084059, arXiv:2003.02473 [hep-th].
- A. Bakopoulos and T. Nakas, “Analytic and asymptotically flat hairy (ultra-compact) black-hole solutions and their axial perturbations,” JHEP 04 (2022) 096, arXiv:2107.05656 [gr-qc].
- B. Kreidberg, C. Bailyn, W. Farr, and V. Kalogera, “Mass measurements of black holes in X-ray transients: Is there a mass gap?,” Astrophysical Journal 757 no. 1, (2012) 36, arXiv:1205.1805 [gr-qc].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Phys. Rev. X 9 no. 3, (2019) 031040, arXiv:1811.12907 [astro-ph.HE].
- LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4M⊙similar-toabsent3.4subscript𝑀direct-product\sim 3.4M_{\odot}∼ 3.4 italic_M start_POSTSUBSCRIPT ⊙ end_POSTSUBSCRIPT,” Astrophys. J. Lett. 892 no. 1, (2020) L3, arXiv:2001.01761 [astro-ph.HE].
- LIGO Scientific, Virgo Collaboration, R. Abbott et al., “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” Phys. Rev. X 11 (2021) 021053, arXiv:2010.14527 [gr-qc].
- H. G. Ellis, “Ether flow through a drainhole - a particle model in general relativity,” J. Math. Phys. 14 (1973) 104–118.
- H. G. Ellis, “THE EVOLVING, FLOWLESS DRAIN HOLE: A NONGRAVITATING PARTICLE MODEL IN GENERAL RELATIVITY THEORY,” Gen. Rel. Grav. 10 (1979) 105–123.
- K. A. Bronnikov, “Scalar-tensor theory and scalar charge,” Acta Phys. Polon. B 4 (1973) 251–266.
- J. B. Hartle, “Slowly rotating relativistic stars. 1. Equations of structure,” Astrophys. J. 150 (1967) 1005–1029.
- P. Pani and V. Cardoso, “Are black holes in alternative theories serious astrophysical candidates? The Case for Einstein-Dilaton-Gauss-Bonnet black holes,” Phys. Rev. D 79 (2009) 084031, arXiv:0902.1569 [gr-qc].
- Dover, New York, ninth dover printing, tenth gpo printing ed., 1964.
- R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1 (1969) 252–276.
- R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48 no. 8, (1993) R3427–R3431, arXiv:gr-qc/9307038.
- V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50 (1994) 846–864, arXiv:gr-qc/9403028.
- M. Visser, Lorentzian Wormholes: From Einstein to Hawking. Computational and Mathematical Physics. American Inst. of Physics, 1995.
- T. Regge and J. A. Wheeler, “Stability of a Schwarzschild singularity,” Phys. Rev. 108 (1957) 1063–1069.
- F. J. Zerilli, “Effective potential for even parity Regge-Wheeler gravitational perturbation equations,” Phys. Rev. Lett. 24 (1970) 737–738.
- C. Vishveshwara, “Stability of the schwarzschild metric,” Phys. Rev. D 1 (1970) 2870–2879.
- F. Zerilli, “Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics,” Phys. Rev. D 2 (1970) 2141–2160.
- W. F. Buell and B. A. Shadwick, “Potentials and bound states,” American Journal of Physics 63 no. 3, (1995) 256–258.
- E. Berti, K. Yagi, H. Yang, and N. Yunes, “Extreme Gravity Tests with Gravitational Waves from Compact Binary Coalescences: (II) Ringdown,” Gen. Rel. Grav. 50 no. 5, (2018) 49, arXiv:1801.03587 [gr-qc].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.