Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combined Machine Learning and Physics-Based Forecaster for Intra-day and 1-Week Ahead Solar Irradiance Forecasting Under Variable Weather Conditions (2303.09073v1)

Published 16 Mar 2023 in eess.SY and cs.SY

Abstract: Power systems engineers are actively developing larger power plants out of photovoltaics imposing some major challenges which include its intermittent power generation and its poor dispatchability. The issue is that PV is a variable generation source unless additional planning and system additions for mitigation of generation intermittencies. One underlying factor that can enhance the applications around mitigating distributed energy resource intermittency challenges is forecasting the generation output. This is challenging especially with renewable energy sources which are weather dependent as due to the random nature of weather variance. This work puts forth a forecasting model which uses the solar variables to produce a PV generation forecast and evaluates a set of machine learning models for this task. In this paper, a forecaster for irradiance prediction for intra-day is proposed. This forecaster is capable of forecasting 15 minutes and hourly irradiance up to one week ahead. The paper performed a correlation and sensitivity analysis of the strength of the relationship between local weather parameters and system generation. In this study performance of SVM, CART, ANN, and Ensemble learning were analyzed for the prediction of 15-minute intraday and day-ahead irradiance. The results show that SVM and Ensemble learning yielded the lowest MAE for 15-minute intraday and day-ahead irradiance, respectively.

Summary

We haven't generated a summary for this paper yet.