Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Day-Ahead PV Power Forecasting Based on MSTL-TFT (2301.05911v2)

Published 14 Jan 2023 in cs.LG, cs.SY, and eess.SY

Abstract: In recent years, renewable energy resources have accounted for an increasing share of electricity energy.Among them, photovoltaic (PV) power generation has received broad attention due to its economic and environmental benefits.Accurate PV generation forecasts can reduce power dispatch from the grid, thus increasing the supplier's profit in the day-ahead electricity market.The power system of a PV site is affected by solar radiation, PV plant properties and meteorological factors, resulting in uncertainty in its power output.This study used multiple seasonal-trend decomposition using LOESS (MSTL) and temporal fusion transformer (TFT) to perform day-ahead PV prediction on the desert knowledge Australia solar centre (DKASC) dataset.We compare the decomposition algorithms (VMD, EEMD and VMD-EEMD) and prediction models (BP, LSTM and XGBoost, etc.) which are commonly used in PV prediction presently.The results show that the MSTL-TFT method is more accurate than the aforementioned methods, which have noticeable improvement compared to other recent day-ahead PV predictions on desert knowledge Australia solar centre (DKASC).

Citations (2)

Summary

We haven't generated a summary for this paper yet.